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ABSTRACT 
 

  
The complexities of social and technological policy domains, such as the economy, the 

environment, and public health present challenges that require a new approach to modeling 

and decision-making.  The information required for effective policy and decision making in 

these complex domains is massive in scale, fine-grained in resolution, and distributed over 

many data sources.  Thus, one of the key challenges in building systems to support policy 

informatics is information integration. We describe our approach to this problem, and how we are 

building a multi-theory, multi-actor, multi-perspective system that supports continual data uptake, 

state assessment, decision analysis, and action assignment based on large-scale high- 

performance computing infrastructures. Our simulation-based approach allows rapid course- of-

action analysis to bound variances in outcomes of policy interventions, which in turn allows the 

short time-scale planning required in response to emergencies such as epidemic outbreaks. We 

present the rationale and design of our methodology and discuss several areas of actual and 

potential application. 

 

Keywords:  Policy Informatics, Information Integration, Public Policy, Complex Systems, 

Computational Social Science 

 

The Challenge 

 

Policy planners often look for quick answers to ―what if‖ questions: What would happen if 

this cell tower became non-operational? What would happen if the people in one demographic 

group were vaccinated? The fact is, the answers to such questions are never quite quick or 

simple. 

 

Many public policy issues nowadays involve Biological, Informational, Sociological, and 

Technological (BIST) systems, which consist of a large number of interacting physical, 

biological, and human/societal components whose global system properties are a result of 

interactions among lo- cal system elements (Albert and Barabási, 2002; Eubank, Guclu, 

Kumar, Marathe, Srinivasan, Toroczkai, and Wang, 2004; Newman, 2003; Vega-Redondo, 

2007).  In other words, the behaviors of each component and the interactions among groups of 

components have an effect on the outcome at the system level as well as the global level. At the 

same time, elements’ behavior and interactions are affected by the global state. The 

interdependencies between the elements’ behavior and effects on the global outcome show that 

it is a two-way feedback process which makes it difficult to control these systems (Sterman, 

2006). Also, they involve multiple stakeholders, who often have conflicting optimization 

criteria. 
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These interactions and interdependencies can be abstracted representationally as networks, 

and network science provides a framework to explicitly and intuitively model local 

interactions and analyze the outcomes from a global perspective. There is a rich literature on 

studying networked systems of interest to public policy, including urban regional transportation 

systems, national electrical power markets and grids, ad hoc communication and computing 

systems, and public health systems (Newman, 2003; Eubank et al., 2004; Albert and 

Barabási, 2002; Barabási and Albert, 1999; Barrett, Eubank, Kumar, and Marathe, 2004; 

Barrett, Eubank, and Marathe, 2006). 

 

Note that different types of interactions are carried out on different networks.  For 

instance, diffusion of knowledge, news, and rumors take place on information networks 

including media coverage and word-of-mouth interpersonal channels.  Physical cascades 

occur on infrastructural networks, e.g., an evacuation may result in traffic congestion as well as a 

breakdown of the communication system through congestion on the base station (Barrett, 

Beckman, Channakeshava, Huang, Kumar, Marathe, Marathe, and Pei, 2010). 

 

Networks are not static but evolve over time.  In case of social networks, the change 

reflects both day-to-day randomness in contacts and systematic changes due to behavior 

adaptation (Chen, Marathe, and Marathe, 2010; Newman, 2003; Vega-Redondo, 2006; Young, 

1998) For instance, physical networks such as transportation networks change due to road 

closures, new bridges, high- ways etc., while informational networks like mobile ad hoc 

networks are self-configuring networks of mobile devices which change with the movement of 

mobile devices (Barrett et al., 2010; Atkins, Chen, Kumar, and Marathe, 2009). 

 

 Since networks are often closely correlated, we have not only evolving networks, but 

co- evolving networks.   For example, consider flu control and prevention.  In flu season, 

there are public level health controls, as well as privately imposed self-interventions. The 

specific method may be pharmaceutical, such as vaccination or anti-viral treatment, or non-

pharmaceutical such as social distancing (not go to work, close schools). Each method leads to a 

co-evolution of epidemics, behavior, and networks. 

 

The flu virus is transmitted through social contacts. Therefore to model the spread of the 

disease in detail, one needs the social contact network of the entire population. Changes in 

the structure of this network are coupled with the health state of each individual.  An 

intervention, whether pharmaceutical or not, changes the epidemic dynamics through changes 

in the contact network or changes in the probability of infection. 

 

These changes occur through changes in individual behavior in response to the epidemic 

dynamics. For instance, in case of a big outbreak with high infection count, people are more 

likely to get vaccinated. Such decisions are typically based on information received through a 

person’s social and information network, and in turn result in changes in the contact network and 

the epidemic dynamics. 
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The co-evolution of network structures and the local interactions in each network are 

often results of individual decision-making processes, and understanding them requires a 

detailed and systematic modeling approach.  Traditional modeling methods fall short, 

considering the complexity of the problems involved. Simplifying assumptions, made to 

ensure tractability of analysis, often reduce the validity and applicability of models as well.  

For instance, the networks considered are often either non-stochastic or from random graph 

family in order to keep the analysis tractable (Albert and Barabási, 2002). Individual 

characterization is either very limited or non-existent (Jackson, 2007; Jackson and Yariv, 2009). 

 

Since policy problems are often trans-disciplinary, adequate solutions require 

integration of models from multiple fields and data from multiple sources. Integration of 

information is a particularly challenging problem, especially in the face of massive data sources 

that have been collected by different individuals and institutions in parallel, and rarely 

specifically for the issue of interest. Consequently, such integration requires rigorous statistical 

methods with deep understanding of the dynamics and complexity of the systems involved. 

 

Networks provide a representation capable of integrating these multiple data sources, and 

their multiplex interactions. Beyond integrating the information, using it for policy and decision-

making presents its own challenges of scale. For example, to study the spread of epidemics in 

New York City, a network with 17 million nodes (individuals) and about a billion edges 

(contacts) is required. For the entire nation, it would be 300 million nodes and 22 billion edges. 

With this kind of scale and computational needs, high-performance computational tools and 

efficient algorithms are essential (Bisset and Marathe, 2009). 

 

 Hence a novel solution for present-day policy informatics problems has to provide a) 

support for multiple views and multiple optimization criteria, for the multiple stake-holders 

(adaptability); b) the capability to incorporate multiple sources of data (extensibility); c) the 

capability to model very large, interacting, networked systems (scalability); and d) support 

for policy planning, by allowing evaluation of a large class of possible interventions 

(flexibility). The team at the Network Dynamics and Simulation Science Laboratory (NDSSL) 

at Virginia Bioinformatics Institute (VBI) at Virginia Tech has developed a methodology to 

integrate information from multiple sources and to build large-scale high-resolution simulations 

to address these challenges (Barrett, Bisset, Eubank, Feng, and Marathe, 2008). Next, we 

describe the rationale and design of our approach and how it satisfies the four properties 

mentioned above. 
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Information Integration and Simulation 
 

 Digital data are being generated at an amazing rate. It is said that if we add up all the 

digital data generated in a year, through computers, mobile phones, digital cameras, 

television, etc., we are entering the yottabyte
1 era. Various large-scale surveys provide 

additional data such as census and consumer behavior. It is tempting to think that the 

informatics problem is simply to organize all the data available and extract the information we 

need to solve our problems, especially when we have such unprecedented data sources. While 

extracting information from such massive amounts of data would be challenging in itself, often 

the real problem is that we do not have the right data for the problem at hand. 

 

Available observations and knowledge are normally not structured specifically for a 

particular question. We overcome this data problem by using available, sometimes imperfect 

information in the form of data and procedures, to synthesize an integrated representation of 

what is known in the context of the decision to be made. 

 

In our general framework, we use multiple modules that serve different functions.  The 

most important characteristic of the framework is the control of data flow. Namely, we have 

multiple (external) data sources as the inputs that are used by and separated from, the modules. 

One particular data set could be used by multiple modules. The (output) data created by 

modules are also used as inputs to other modules. The separation and flow of data is the key as it 

allows the information integration process to perform iterative refinement, which is critical 

because that enables the specifics of the integrated information to be determined by the context 

of the problem. For instance if we are interested in studying the spread of a disease, getting the 

traffic patterns exactly right might not be necessary, but if we are studying the transportation 

infrastructure, then we need to include data on traffic patterns, road capacities, speed limits etc. 

into the information integration process. Figure 1 below shows a simplified overview of such 

framework.  

 

From an informatics perspective, there are a couple of important things to note about this 

approach. First, it goes beyond traditional informatic notions of indexing and mining, by 

combining many sources of data into a model that encodes nominative, declarative, and 

procedural knowledge.  In addition to policy planning and simulations, this allows 

consistency-checks of the data sources, and also exposes gaps in data, which can guide future 

data collection efforts. Therefore, we call this approach model-based informatics. Second, this 

is really a ―generative social science‖ approach (e.g., Epstein, 2005), since the generated model 

can be more complete than information gained from surveying alone. 

 

                                                           
1 1 yottabyte = 1024   bytes = 1 trillion terabytes. 
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Figure 1: Overview of the information integration framework 

 
 

Additionally, the synthetic data created (population, contact networks, activities, etc.) by 

our approach based has the following features: (1) it is statistically equivalent to the real data, 

(2) it is anonymous which helps overcome issues related to human subjects, (3) it is 

comprehensive and provides justification for certain kinds of policy decisions, (4) whenever 

available, components of synthetic data can be replaced with real data, and (5) it represents 

integrated interaction-related information from multiple sources. 
 

A complete system to support policy and decision-making involves not just the 

integration of information and data from multiple sources, but also the software and high-

performance-computing infrastructure required to conduct large-scale simulations. This is a 

very important issue because experimental designs in these domains generally involve 

multiple factors and many iterations to bound the variance.  It is necessary to be able to run 

complete experiments on the time-scale of hours in order to help guide policy in domains like 

epidemiology, where decision makers only have hours or days to evaluate interventions in the 

midst of an outbreak. 
 

To solve this issue, two software systems have been developed and implemented at 

NDSSL, Simdemics (Bisset and Marathe, 2009; Bisset, Feng, Marathe, and Yardi, 2009a; Barrett 

et al., 2008) and EpiFast (Bisset, Chen, Feng, Kumar, and Marathe, 2009b). Both are capable of 

efficiently simulating various contagion processes on large-scale distributed-memory 

computing infrastructure. Simdemics works with the full person-location dynamic synthetic 

population, and has a very expressive specification system for defining interventions and the 

resulting alterations to people’s daily schedules and interactions. EpiFast works with the 

person-person social contact network, or any other network where every node is of the same 

type, and does a very rapid evaluation of a diffusion process on the network. They both 

implement highly-parallel algorithms that automatically distribute the network over the 

available processing elements and manage the communication between elements to keep the 

state of the diffusion process consistent. 
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The final component required to develop simulations in the epidemiological domain is a 

model of the contagion itself. For example, in epidemic modeling, each disease has specific 

parameters such as incubation time, probability of infection, etc. Also, different models of 

propagation can be used, such as SIR (Susceptible-Infectious-Recovered) or SEIR 

(Susceptible-Exposed-Infectious- Recovered).  Our tools allow user-defined configuration to 

accurately specify these parameters. Similarly, social contagion processes, like the spread of 

smoking behavior, can involve other factors that determine the probability of spreading, such 

as popularity, socio-economic background, age, prior exposure, and many others. In such 

cases, we develop data-driven models of diffusion based on domain-specific data sets (e.g., 

Harris, 2008). We now discuss how the use of integrated information allows one to build 

systems with the properties required for a systematic solution to policy problems. 

 

Adaptability 

 

Most policy problems are trans-disciplinary. For example, a disease epidemic is not just 

a public health problem, it is also a social and economic problem. Epidemics place a huge cost 

upon society. It is estimated that the 1918 flu pandemic resulted in about 50 million deaths 

worldwide, and that a similar pandemic today would result in 150 million deaths and cost $4.4 

trillion. These costs come from loss of income and productivity, interventions, distribution of 

vaccines and anti-virals, school closures, and caring for sick and children. Consequently, an 

effective tool for policy informatics needs to be a multi-theory, multi-actor, multi-perspective 

system. More concisely, we refer to this property as adaptability. 

 

Modeling such a complex system requires a multi-theory and multi-perspective approach. 

Al- though researchers have been attempting to use general systems theory as a unified theory to 

model system problems across fields since the work of Von Bertalanffy (1968), major 

weaknesses of this approach have yet to be overcome (e.g., Kast and Rosenzweig, 1981). 

Besides, it is necessary to investigate complex issues with perspectives from different fields, as 

no single theory can explain all the aspects of issues that are observed (Contractor, Wasserman, 

and Faust, 2006). For instance, developing an integrated epidemic model requires input from 

multiple theories, including biology (e.g., to parameterize models for specific diseases), 

economics (how many doses of anti-virals to produce and at what price), sociology (whom to 

vaccinate) and public policy (which interventions to apply and when), among others. 

 

From the analysis point of view, the system supports multiple perspectives. Designing 

interventions and vaccination policies requires multi-criterion optimization because individual 

objectives may not be socially optimal. For example a public policy of complete school closure 

or mass vaccination of all individuals may be unacceptable or unimplementable. Examples of 

the use of our system in multi-perspective analysis are given in section 3. 

 

As mentioned above, the integration of models is more than a simple mix. Oreskes (2000, 

2003) and Oreskes and Belitz (2001) have described some of the fundamental issues with 

building complex models.  The basic issue is a seemingly inverse relationship between 

complexity and realism of the model on the one hand, and trust in the model and certainty in its 

output on the other. As we include more and more factors within a model, the uncertainty in its 
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output also increases. Model integration also goes beyond model federation, which has typically 

been driven by the desire for point estimates. However, for the kinds of complex systems in 

which we are interested, this is simply unachievable. 

 

Third, and equally important, effective policy in this domain requires input from multiple 

stake- holders. For example, government and other institutions at multiple levels are involved in 

deciding and implementing intervention policies, awareness campaigns, etc. To this end, we 

have designed a web-based, service oriented front-end to the simulation environment, called 

DIDACTIC, which allows epidemiologists, policy planners and researchers to use our 

framework. This has the advantage of making the tools directly available to the stakeholders, 

which in turn allows the computational modeling aspect to be a real participant in the policy 

conversation. Policy discussions can lead directly to simulation experiments, and the simulation 

results can be directly accessed and interpreted by the policy planners. This also has the 

secondary advantage of providing a sense of participation and ownership to the stakeholders. 

The simulation environment is no longer just a black box to them, since they are trained on 

how it works, and can design experiments and analyze results themselves. The system then 

takes care of translating the experiment design into a set of compute jobs that run on the HPC 

infrastructure and delivers the results back to the user. 

 

To facilitate the specification and implementation of interventions, a database tool 

called Indemics has been designed and developed.  Indemics is an Interactive Epidemic 

Simulation and Modeling Environment that allows a user to actively interact with the system 

so that the user can make changes to the social network, individual behaviors, or the disease 

models in run time (Bisset, Chen, Feng, Ma, and Marathe, 2010). It supports rich queries across 

multiple data types, e.g., find a count of infected persons in zip code 24060 or find all the 

infectious students in Blacksburg High School and their family members. The user interacts 

with Indemics using well-defined languages, e.g., count infected persons:  group = seniors, 

infected day = between 20 and 22.  One can also build pre-defined libraries of queries by 

expert users. 

 

The software infrastructure also includes a digital library which will keep archives of the 

old simulation runs, disease models, configurations, input and output files (Leidig, Fox, 

Marathe, and Mortveit, 2010). Our graph analysis software library Galib provides efficient 

implementations of various classical and new graph measures that are motivated by the analysis 

of social contact graphs and disease dynamics on such graphs. It can be used to compute 

efficiently structural measures of social contact networks with 10 million vertices and over 500 

million edges. 

 

In addition, adaptability also means that the system must be able to respond to a 

dynamic world, by providing means for continual data uptake, state assessment, decision 

analysis, and action assignment. For example, during an epidemic outbreak, new data are 

constantly being collected on the status of the outbreak, such as number of people infected, 

their demographics, their locations, etc.  Our simulation system allows continual (or 

periodical) updating of the state of the model based on the new data runs essentially like a 

predictor-corrector filter – the model generates a prediction of the state of the world, and 
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input from the world is used to correct this prediction. The prediction error then adjusts the 

model so that subsequent predictions are closer to the mark. Indemics allows our simulation 

system to be run in this interactive way, which allows the model to be more veridical. For 

example, each day, the state of the model can be adjusted to reflect the number of people 

infected, as determined by the data gathered by the CDC. Thus the decisions based on the 

model always reflect the latest information. 

 

Extensibility 
 

As discussed earlier, we integrate information from multiple sources to design our 

modeling and simulation system. In principle, we can keep adding new data sources and keep 

expanding the integrated information being generated
2
.  Thus, our models are extensible by 

design. However, doing this in a coherent manner requires some understanding of the data. 

There are four different kinds of data sources: survey data, administrative data, commercial 

data and increasingly, ubiquitous in- formation sources like the Internet. Each has different 

properties and present different challenges to integration. 
 

Survey data are typically expensive to gather, but are nevertheless highly desirable because 

they are gathered in a very controlled and rigorous manner which means we have a good 

understanding of the sources of error and variance in the data. These are the data sources that 

have traditionally been used for social theories and therefore can provide a sound theoretical 

grounding for a model. However, survey data are always sparse, and always slightly outdated. 

For instance, the census is only conducted every ten years. 
 

Administrative data on the other hand, are gathered by bureaucratic institutions such 

as the Department of Motor Vehicles and the Internal Revenue Service, or by corporations 

and institutions such as hospitals, universities, etc. These data tend to be the opposite of survey 

data in most respects: they are much more complete and current, but much less rigorously 

gathered, often containing errors, missing values, and unknown biases and sources of variance. 
 

Commercial data are the data that are commercially available from companies such as 

Dun and Bradstreet, Acxiom, Navteq etc. These data are expensive to obtain and keep current. 
 

Ubiquitous information sources, such as the Internet, cell phone data, etc., are even more 

un- controlled, but are current and dynamic. However, it is not clear as to how to harvest these 

datasets and how to integrate and reconcile them with the other kinds of data sources. 
 

Much of the research in information integration lies in developing techniques to fuse 

various sources of data in statistically rigorous ways, and in recognizing gaps in the data and 

developing well-founded models to fill in these gaps.  For example, to model the diffusion of 

smoking, we need adolescent friendship networks for the population of each school in the 

synthetic population. For this we have adapted and generalized a method of hierarchical 

network decomposition due to Clauset, Moore, and Newman (2008). They showed how to 

generate a dendrogram that represents the hierarchical clustering structure present in a network. 

                                                           
2 Note that extensibility refers to addition of data sources of a new kind, such as adding consumer behavior survey 

data to the census data. Whereas updating data mentioned in adaptability refers to new data added to the existing data 

source, such as the latest count of infected individuals. 
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We applied their technique to all the adolescent friendship networks in the Add Health data 

(Harris, 2008), and then developed a generative probabilistic model over the resulting 

dendrograms.   This probabilistic model then allows us to generate new dendrograms of 

different sizes, and thereby to generate friendship networks for our synthetic adolescent 

populations. Problems like these spur the development of new techniques in network science, 

machine learning, and related fields. 

 

Scalability 
 

Realistic simulations require the ability to compute interactions between millions of 

agents. This scalability problem has been referred to earlier, in the context of the need for 

high-performance computing infrastructure and highly parallelized algorithms. However, the 

main insight behind our models that allows scalability is the notion of interaction-based 

computing (Barrett et al., 2006). This concept is best explained through an example. 
 

Consider the problem of representing traffic dynamics in a city. There is no explicit 

algorithmic description of this problem.  Traffic is an emergent property from the interactions 

between individual drivers. It is possible to make a careful study of individual drivers to 

determine a detailed model of their behavior and responses to various conditions and 

situations, and thereby to make a model that allows simulation of traffic dynamics.  In most 

agent-based models that follow this approach, each agent would carry a complete set of driving 

rules, or possibly some other statistical representation.  Such an approach results in ―heavy‖ 

agents, i.e., the description of each agent is complex and memory-intensive, which hinders 

scaling. 
 

However, it turns out that an alternative model is possible, which uses a simple and 

parameterized description of the individual driver, but still results in the correct traffic dynamics 

because they emerge from the interaction pattern between agents. In this case, the computing 

that was being done inside the agent in the previous model is now being done through the 

interaction between agents and their neighbors. Moreover, this interaction is dynamic and the 

neighborhood changes all the time. In other words, the environment is not static. The driver 

interacts continually with the environment and co-evolves with it.  For instance, Barrett, 

Wolinsky, and Olesen (1996) showed that a simple set of cellular automaton rules for traffic 

simulation can be viewed as equivalent to an adaptively compensated derivative feedback 

control system. This macro-scale equivalence and parameterized specifications for each 

individual allows agents to be much simpler in description, i.e., they are ―light-weight‖, which 

greatly enhances the scaling capability (Atkins, Barrett, Beckman, Bisset, Chen, Eubank, Feng, 

Feng, Harris, Lewis, Kumar, Marathe, Marathe, Mortveit, and Stretz, 2008). 
 

In our simulation models, agents are therefore properly viewed as ―unencapsulated‖. In 

other words, the description of the individual agent is distributed across the entire integrated 

information data structure, rather than being contained in a single software object. This 

prevents the problem of over consuming memory by using only the information needed for 

each agent and interaction. In case more details and data are needed, users can turn to the 

corresponding module. 
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Flexibility 

 

One of the main advantages of a simulation-based approach over a more traditional 

differential equation based approach to policy modeling is the ease and intuitiveness with 

which interventions can be represented. For example, in the epidemiological domain, the notion 

of ―social distancing‖ is an important basis for designing interventions.  The basic idea is that 

by reducing the number of edges in the social contact graph, we can reduce the available 

paths for the spread of disease, thereby reducing the size of the outbreak.  Differential 

equation based models typically result in recommendations such as ―reduce the number of 

social contacts by 20%‖.  These can be further qualified by demographic data, but the essential 

recommendation remains the same. However, it is unclear how to implement such a 

recommendation in the real world. Should the schools remove 20% of the students from 

attendance, should each household member reduce contact with other members by 20%, 

should grocery stores allow 20% less customers, etc. 

 

A simulation-based approach, on the other hand, allows policy makers to experiment with 

very concrete and specific interventions, such as closing particular schools for particular periods 

of time. Note that the intervention is not to close all schools, or to close some randomly 

chosen schools, but to close a specific set of schools.  Further, the simulation also allows us 

to accommodate resulting changes in activity schedules for parents, children and teachers, 

which further determines the revised social contact network. A large class of interventions 

has been implemented within Simdemics, including vaccination, anti-viral distribution, and 

school closures, generic social distancing, household quarantine etc.  It is also easy to mix 

and match these interventions, so that multiple ones can be applied at the same time. 

 

Internally, each agent in the simulation is represented by a probabilistic timed transition 

system (PTTS). This can be thought of as a set of finite-state automata, where the transitions 

in each automaton can be triggered by the states of the other automata, the states of neighbors’ 

automata, or time (e.g., to represent a transition from infectious to recovered state). This means 

that although the automata are represented separately, the system is effectively operating in the 

cross-product space of these automata.  This results in a very flexible and scalable 

representation, which is powerful enough to represent not just disease dynamics but also social 

contagions. 
 

 

Practical Applications 
 

Our modeling environment has been used in a number of user-defined case studies 

including re- cent pandemic planning studies undertaken for DoD and DHHS. Multiple studies 

were conducted for the DoD regarding military preparedness and force readiness. The studies 

elucidated how protecting a small critical subset of a larger population is fundamentally 

different from public health epidemiology.  The studies provided guidelines for military 

preparedness in the event of an epidemic outbreak. The results showed the importance of 

early detection in implementing effective sequestration and the apparently counter-intuitive 

result that sequestration, if implemented late, might lead to more infections rather than less 

infections (Atkins, Barrett, Beckman, Bisset, Chen, Eubank, Lewis, Marathe, Marathe, 
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Mortveit, Stretz, and Kumar, 2006b; Atkins, Barrett, Beckman, Bisset, Chen, Eubank, Kumar, 

Lewis, Macauley, Marathe, Marathe, Mortveit, and Stretz, 2006a). These studies have guided 

the continued evolution of our simulation system both in terms of its usability and model 

development. The studies also helped us identify new research questions at the interface of 

multi-agent modeling, data mining, network science and high performance computing. 

 

Next we describe a particular case study that demonstrates the applicability of our 

modeling approach to real life scenarios (Chen et al., 2010). This is the first study that uses 

individual based approach to analyze how behavioral changes occur in response to the growth 

of the disease and how these changes, in turn, affect the disease dynamics. In order to study 

the diffusion of disease on social networks, we first build a social network. 
 

 

Information Integration for Building Social Networks 
 
The key input in this study is the synthetic population and social contact network on 

which the spread of flu virus occurs. To generate the synthetic populations and the social 

contact network, a multi-step process is involved (Bisset and Marathe, 2009; Beckman, 

Baggerly, and McKay, 1996)
3
. The process is illustrated in Figure 2. 

 

First a synthetic set of individuals for a particular US area is built by integrating a variety 

of commercial and public data sources including the US Census.  The synthetic population is a 

set of synthetic people and households, located geographically, each associated with a set of 

demographic variables drawn from the Census.  It is generated in such a way that a census 

of the synthetic population is statistically indistinguishable from the original census, i.e., the 

joint distributions of demographics (such as age, gender, and income) are fitted to match those 

taken from the Census  (Barrett, Beckman, Berkbigler, Bisset, Bush, Campbell, Eubank, 

Henson, Hurford, Kubicek, Marathe, Romero, Smith, Smith, Speckman, Stretz, Thayer, 

Eeckhout, and Williams, 2001; Beckman et al., 1996). 

 

                                                           
3 For more details on algorithms used in the process and the synthetic data, please refer to the technical reports 

available at http://ndssl.vbi.vt.edu/transims.php and http://ndssl.vbi.vt.edu/opendata/index.php. 

http://ndssl.vbi.vt.edu/transims.php
http://ndssl.vbi.vt.edu/opendata/index.php
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Figure 2: Schematic of the information integration process 

 
 

The Census provides data aggregated to the block group level, essentially providing 

marginal distributions and covariances for a number of demographic variables. From these, we 

re-construct a disaggregated population using a method called iterative proportional fitting 

(Beckman et al., 1996). The resulting synthetic population matches the statistics of the census 

data at the block group level, but not at a finer granularity (e.g., not at the level of individuals). 

In this sense, a synthetic population is inherently anonymous since it cannot be used to identify 

particular individuals in the real world. This is an important issue in many policy domains. 

 

We then assign a set of activities to each person in the household based on activity-time 

survey data.  A set of activity templates for households is determined based on several 

thousand responses to an activity or time-use survey (Barrett et al., 2001; Beckman et al., 1996). 

The activity templates include the sorts of activities each household member performs and the 

time of day they are performed. Each synthetic household is then matched with one of the 

survey households using a 12-parameter decision tree. Based on demographics such as the 

number of workers in the house- hold, number of children, their ages, and the characteristics 

of a place such as size and distance between the place and an individual’s home location, we 

measure the likelihood that an activity happens at a specific location. In turn, the synthetic 

household is assigned the activity template of its matching survey household. For each 

household and each activity performed by this household, a preliminary assignment of a location 

is made based on observed land-use patterns, tax data, etc. 

 

A complete daily schedule for each individual gives a bipartite person-location network, 

where nodes are persons or locations, and a link between a person and a location exists when 

that person visits that location. The link is labeled with the start and end time of the visit, 

which effectively means that the graph is time-varying. From this graph, we can also induce a 

time-varying person- person interaction graph, by adding a link between each pair of persons who 

are at the same location for an overlapping duration. Then we can remove the location nodes, 

and we are left with a time- varying social contact network. 
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In other words, we derive a person-person social contact network from the person-

location activity network. Note that we have extracted this network from multiple sources of 

data. It is not directly available. Given the start and end time of each person’s stay at a location, 

we also have the contact duration for each pair of persons. For epidemiology studies, the edges 

of the social contact networks are weighted with the conditional transmission probabilities 

based on the duration of contact. 

 

Case Study 
 

This case study models the spread of a flu-like illness in the New River Valley region of 

Virginia with a population of 150,000. We assume that there are 15,000 units of anti-viral 

courses available. The anti-virals can be distributed through two channels: the public sector and 

the private sector. The goal of this research was to find an optimal distribution of a limited 

supply of anti-virals between the public sector and the private sector so that the attack rate is 

minimized and enough revenue is generated to recover the cost of the anti-virals (Chen et al., 

2010). 
 

The public sector distribution of anti-virals is done through the hospitals. At a hospital, 

if an individual is diagnosed to be infected, s/he is given the anti-viral at no cost. This study 

accounts for the fact that infected individuals do not always show symptoms, and symptomatic 

individuals do not always report to hospitals. Also, misdiagnosis of sick and worried-well is 

possible. 
 

The private sector distributes the anti-virals through the market where individuals can 

purchase the anti-virals for prophylactic use or future treatment. The revenue from the market 

helps recover the overall cost of anti-virals.  The private demand for anti-viral is based on the 

budget of the household, price of the anti-viral, number of infections in the society and the 

demand elasticity of prevalence. 
 

In addition to buying anti-virals, the household members isolate themselves at home 

when a member of the household is diagnosed to be infected. These interventions change the 

epidemic dynamics through changes in the social contact network and transmission probabilities. 

The change in epidemic changes the disease prevalence, which affects the private demand for 

anti-virals, which in turn impacts the health state of the individuals (Barrett, Bisset, Chen, 

Lewis, Eubank, Kumar, Marathe, and Mortveit, 2007). 
 

The simulation results show that allocating the entire stockpile of the anti-virals to just 

the public sector or just the private sector is a sub-optimal strategy.  The study isolates the 

effects of changes in behavior and changes in the social network caused by people’s reaction 

to disease prevalence, on the prevalence itself.  The results showed that prevalence elastic 

demand of anti- virals can delay the onset of the outbreak and changes in the social network 

caused by quarantine can reduce the peak of the epidemic curve by a significant amount. 
 

The attack rate decreases as more of the anti-viral stockpile is allocated to the hospitals, 

since it is targeted to those who are infected. However, the attack rate reaches a lower bound 

because only a fraction of the infected individuals report themselves to the hospitals and get 

correctly diagnosed. 
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Another finding is that the market stockpile is taken up by people according to their 

household income rather than their health state.  In other words, households with high 

income get most of the private anti-viral stockpile even though the exposure count among them 

is low. This is more so when the demand function is prevalence elastic. In this case, the 

households in the top 30 percentile of income get the entire private supply of anti-virals. This 

is because in case of elastic demand, when disease prevalence is high, the demand for anti-

viral goes up which drives the price higher, making it unaffordable to lower income families. 

 

In summary, this case study examines the co-evolution of epidemics, individual behavior, 

and social networks. The simulation results show that the dependence of demand on disease 

prevalence postpones the peak of the epidemic by about a month; and household isolation 

decreases the peak attack rate by more than 1000. 
 

 

Conclusions and Outlook 
 

We are living in a world of networks, and these networks are becoming more 

interdependent every day. Social networks are inextricably entangled with communication 

networks, transportation networks, logistical networks, and the like. The increasing 

dependencies and the increasing densities of these networks imply that a disruption in any one 

affects all the others. For a policy to be effective in such complex systems, response has to be 

very rapid, but their very complexity makes decision-making difficult and time-consuming. 

 

The challenge, therefore, is to confront this complexity and to build the tools to tame 

it, so that policy-makers can leverage from the best models and computing capabilities 

available for decision-making. Our vision is to develop a computational environment for policy 

informatics that can seamlessly integrate many sources of data with the high-performance 

computing hardware and software necessary to process them, so that they can be delivered to 

a policy decision-maker as cleanly as the Google home page. This is not a static system. As the 

underlying theory of network science evolves and the underlying computing technology 

evolves, our tools will evolve as well, but much of this can be transparent to the end-user. 

 

Validation of integrated information is a new challenge for information science, because 

classical techniques are insufficient. Techniques for validation of each data source and survey 

separately exist, and are well understood in statistical science and survey science (e.g., Rice, 

2006), but it is still a developing science in the field of information integration. 

 

For the past sixteen years, the team members of the Network Dynamics and Simulation 

Science Laboratory (NDSSL) have been pursuing research on biological, informational, 

social, and technological networks to further this vision of integrated situational awareness 

and consequence analysis. Such an environment can support policy-makers from the highest 

levels to the levels of first responders. 

 

In this article we have described the philosophy and design of our approach to 

information integration and simulation for policy informatics. Our systems are built to support 
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multiple policy domains, from multiple perspectives. We have discussed how they compare 

with older approaches to systems modeling and agent-based simulation. We have also presented 

a specific case study that demonstrates their use.  We believe that the future of policy and 

decision-making is data-driven. Our work aims at integrating data with models and procedural 

knowledge to create the necessary systems to support the accelerating pace and complexity of 

human social and cultural life. 
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