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Introduction 

 
Complexity Science Applied to Innovation – Theory meets Praxis 

 
Introduction: The Rise of Complexity Science in an Interconnected World 
 
 At the end of the twentieth century, the preeminent English astrophysicist Stephen 
Hawking proclaimed that the twentieth-first would be the “century of complexity.” Hawking’s 
words were certainly prescient since it is no historical accident that around the globe at this 
period of time the intensive study of complex systems, an area of research generally known 
under the appellation of “complexity theory,” has become one of the most burgeoning arenas 
of scientific and practical endeavors. As our world has become increasingly interconnected 
through vast communication and information networks, so that what happens in one 
geographical region may go on to have great import for other regions separated by long 
distances and a huge diversity in cultures, so has complexity science arisen to probe and 
formulate the nature of interconnectivity and the dynamics of the networks making such 
interconnectivity possible.  

 Not only is the scale of this interdependence unprecedented in world history, so is the 
radical novelty of all those multifarious innovations necessary to support the infrastructure of 
information technologies as well as organizational transformations which are enabling these 
networks (Merry and Goldstein, 2003). So again it does not come as a surprise to recognize 
that complexity theory has ushered in, as one of its main foci of research, the study of radical 
innovation or what in complexity discourse is termed “emergence” in complex systems, the 
arising of unforeseen new structures with unexpected new properties (Goldstein, 1999).        

Difficulties in Defining “Complexity” 
 Yet, it is no mean feat to either precisely delineate what constitutes complexity theory 
or even to define the very term “complexity.” These conceptual difficulties result from at least 
three crucial factors involved in the study of complex systems. The first has to do with an 
exponential explosion of new findings across a huge number of fields and from a great many 
countries. Indeed, complexity theory is essentially transdisciplinary in nature, representing the 
confluence of research from around the world in such ideationally and methodologically varied 
fields as neuroscience,  social psychology, computer science, mathematical graph theory, solid 
state physics, education, leadership studies, mechanical engineering, and on and on (this list 
could go on for several pages!). This interdisciplinarity makes it clear that complexity theory is 
not adequately conceived as merely one theory or even one set of theories. Rather, complexity 
science can be compared to the world wide web in terms of its enormous mixture of interests 
and the diverse knowledge domains involved.  

 The cross-disciplinary status of complexity science is in fact reflected in several ways 
in this Special Issue of The Innovation Journal. First, there are the many and varied fields in 
which complexity theory is applied: health care, coal mining, leadership studies, library 
science, crisis management (in face of natural and man-made disasters, e.g., hurricanes and 
terrorism attacks), organizational change, production processes, the use of simulations for data 
analysis, collaborative alliances, innovations in public and private organizations and 
institutions, and the public funding of education. Second, there are the wide-range of countries 
from which the authors hail - a truly international cast of characters - including Slovenia, 
Kazakhstan, Canada, the People’s Republic of China, Portugal, and the United States. If we 
include the countries of origin of our authors this list even grows considerably larger. Third, 
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there is a wide variety in the approaches taken in applying complexity science to the specific 
domains mentioned above. These range from “thick” qualitative descriptions, to case studies, 
to conceptual analyses, to mathematical methods, to agent-based models, to simulations. 

  A second factor making complexity theory elusive to pin down has to do with the very 
nature of what makes a complex system complex. In this regard, due to the radical novelty of 
the methods and insights making up complexity science, there is a frequent utilization of 
terminology that is defined in the negative, e.g., non-linearity, un-predictability, ir-reducibility 
and similar negation prefixed terms. Take the expression “non-linearity” which literally refers 
to the phenomenon of not being able to graphically represent the variables under study with a 
straight line in a Cartesian coordinate system, or in other words, the presence of a 
disproportionality between causes and effects in complex systems so that a small cause may 
result in a large effect or a large cause may result in a small effect. Of course, the possibilities 
for nonlinearity are much more immense than for linearity since nonlinearity comprises the 
whole plenitude of possible curvilinear representations which obviously greatly exceeds a 
simple straight line.  

But this plenitude in the negative is akin to what the British mathematician Ian Stewart once 
described as defining all animals that are not elephants as “non-pachyderms.” Obviously, the 
latter definition doesn’t yield much information about all these other sorts of animals except 
for the fact they are not elephants! 

 Nonlinearity shows up in mathematical representations of feedback loops (positive and 
negative) and the kind of circular or mutual causality that several of the papers appeal to in 
discussing the complexity of the various situations they describe, a good example being the 
paper by Dawoody who points to the kind of “mutual causality” characterizing the interaction 
of the federal and state governments and local school districts. Nonlinearity can introduce an 
intractability in solving equations which for the most part doesn’t exist in the case of linear 
math, another indication, therefore, of the confoundedness that comes with a complex system. 
As one famous complexity-oriented physicist pointed out, when he was in college typical 
physics textbooks focused on linearizations in mathematical models because the linear 
equations were mostly solvable whereas he had to turn to the textbooks’ appendices to find 
information about nonlinear systems since the latter were too difficult or even impossible to 
work with. 

 The word “complex” is itself defined mostly in the negative as what is not simple, as 
not linear, as not predictable, as not reducible, and so forth. The solid state complexity-based 
physicist Kurt Richardson (2006) refers to these features of complex systems under the 
descriptor of the “darkness principle” since complex systems, by their very nature, cannot be 
known completely. We can see variations of this principle emphasized in the book The Black 
Swan which is reviewed by Gow in this issue. This is a topic that will be returned to in later 
sections but for now it needs to be stressed that unpredictability as such does not necessarily 
imply a lack of determinative causes or laws operative in complex systems but rather how the 
very complexity of such systems hinders attempts to precisely deduce future states. 

 To be sure, there have many attempts, even valiant ones, to define “complex” or 
“complexity.” One helpful line in this direction is to point out that the “-plex” part has to do 
with “folds” as in the intricate fold-like structure of the human brain, and the “com-” refers to 
“with” so that “complex” means “with many folds.” What is complex then is usually 
distinguished from the what is merely “complicated” which, although this term also suggests 
something not simple such as an entangled fishing line, what is only complicated can become 
uncomplicated just as a complicatedly entangled fishing line can be disentangled with enough 
patience. However, a complex system refers to systems which are in principle, by their very 
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nature, not capable of being disentangled. Instead, their many folds are what makes them 
complex and their particular features are the consequences of these many folds that are not 
amenable to being unfolded since, even if such a thing were possible, that would rob them of 
what it is that makes them uniquely what they are. 

 Difficulties in precisely defining “complex” and “complexity” though do not imply that 
all hope for conceptual clarity is nil. Indeed, even a complex system’s unpredictability is 
yielding to new methods and new models and new conceptions of what is involved in our 
ability to predict. For instance, the exact state of the weather a year from now, a state indicated 
by the temperature or barometric pressure, is in principle as well as in practice unpredictable 
because the weather is a complex system.  Indeed, the weather is often used as a prototypical 
complex system because of the interacting factors involved, but much about the state of the 
weather is in fact predictable because the climate serves to limit the range of the valuations of 
the variables of the state of the weather and climate doesn’t change with the rapidity with 
which the state of the weather does.  

 

The Scientific and Mathematical Background of Complexity Science 
 
 Even though complexity theory contains a host of new concepts, methods, tools, and 
insights, for the purpose of this Special Issue, it can be helpful to zero-in on four major, 
interrelated core conceptual underpinnings of complexity theory: networks; differences; 
emergence; and attractors as indicated by the black underlining in Figure 1 below (for a more 
extensive explication, see Goldstein, 2007a): 
 

 
 
Figure 1: Scientific and Mathematical Sources of Contemporary Complexity Theory (from 
WWII to the present). 
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Although the scientific and mathematical disciplines making up contemporary complexity 
theory formed out of a confluence of variegated sources, many of which can be traced back to 
the World War II, a description of these four mentioned constructs can give us a sense of what 
it is that makes up the field of complexity science. Indeed, we shall see that each has close 
connections with innovation in general. Many complexity principles are described in greater 
depth in several of the papers of this Special Issue, e.g., the papers by Amagoh, Bolton & 
Stolcis, Johnston, et. al., and Verdon. 
 
Networks 
 
 One of the most exciting and more recent developments in complexity science concerns 
the study of social networks, that is, the way each of us is connected to others through social 
linkages, whether formally as in an organizational hierarchy or informally as in friendship 
circles. Social networks, consisting of linkages (or edges) connecting agents (or nodes), come 
in a variety of types, each with benefits and limitations depending on the purpose of the 
network. Here, though, we will go over four types of networks for the sake of brevity. The key 
in understanding the role of networks in complexity theory is their function in connecting parts 
or agents of a complex system. The connections comprising a network enable the flow of 
information and other resources within the system and between the system and its various 
environments. More will be said about what “information” means in the context below in the 
next section on differences. 

 One type of network, perhaps the one longest studied since work in the nineteen fifties 
in the mathematical theory of graphs, is the so-called random network, a network in which the 
nodes and edges are laid down in a random fashion. We can see evidence of random networks 
in the connections established among people mingling in a large party or the grid of highways 
in the US linking cities and towns of different sizes (Barabási, 2002). An important feature of 
random networks is related to the phenomenon of emergence, described in greater depth below, 
that occurs during phase transitions in a network (Newman, Barabási, & Watts, 2006). A phase 
transition refers to the usually sudden onset of new properties when a complex system reaches 
some critical threshold of complexity. An example of a phase transition in a random network is 
known as the emergence of a “giant cluster” when all the nodes or agents in the system become 
connected to each other (Barabási, 2002). For instance, a giant cluster can emerge when the 
host of a party introduces enough single individuals and couples to each other that at some 
point everyone in the party is connected to everyone else, albeit many are indirect connections 
through intermediary nodes or agents. One of the features of a random network is a normal 
distribution (Bell curve) exhibited when the number of nodes with k number of links is plotted 
in relation to the number of links (k). This means that there most nodes or agents have a similar 
number of links and there are very few highly connected nodes.  

 In hub networks, though, certain nodes or agents possess many links to other nodes or 
agents, yet many other less connected nodes or agents only connect to other less connected 
nodes via the more connected hubs. An example can be found in airline traffic routes, e.g., 
Delta has a hub in Atlanta, US Air in Philadelphia, American in Miami, and so forth. Since in a 
hub network, smaller cities are connected to larger ones only via the hubs, in order to fly, via 
Delta Airlines, from Athens, Georgia (where the University of Georgia is located) to New 
York you would need to first fly from Athens to Atlanta, which is Delta’s hub, and then change 
planes to fly onto New York. Thus, a disadvantage of a hub network is that less connected 
nodes or agents are only connected to each other through intermediary hubs, a fact exhibited 



              The Innovation Journal: The Public Sector Innovation Journal, Volume 13(3), 2008, article 1. 

 6

above in the case of air travel. Yet, hub networks obviously offer a number of benefits 
including, e.g., centralized aircraft maintenance and route efficiencies. 

 Another type of social network is termed a small-world network since it consists of 
linkages among agents or nodes with as few intermediaries among them as possible, thus 
making up a “small-world” (Watts, 1999). The small world network achieved some notoriety a 
few years ago with the so-called phenomenon of “Six Degrees of Separation” (also the name of 
a Broadway show as well as film) which for some obscure reason focused on the actor Kevin 
Bacon as being the nodal hub linking across Hollywood film, television, and theater actors, 
producers, directors, and so forth. The idea was basically that no currently living person on the 
planet was separated by more than six intermediary persons (agents or nodes). This might seem 
hard to believe but in many rounds of playing a “small-world” game with friends and 
colleagues, we managed to find even less than six intermediaries linking a peasant in the 
middle of China with a politician in South America, two nodes that would otherwise be 
presumably thought to be vastly separated from each other. As it turned out, studies of actual 
social networks among actors, etc., demonstrated that it wasn’t Kevin Bacon who was the real 
hub of Hollywood – instead, it turned out that the actor Rod Steiger played more of a hub role 
in that Steiger was a greater connecting link among the many people constituting the social 
network of persons in the entertainment world.  

 By cutting down on the number of intermediary nodes or agents in the small-world 
network, the speed of information flowing in the network can increase since there are fewer 
way stations along the way where the information would have to be received and then 
retransmitted. On leadership applications of social network theory see the relevant chapters in 
Hazy, Goldstein, & Lichtenstein (2007) and Marion & Uhl-bien (2007). 

 Still another type of network, an even more recent subject of research, is known as a 
scale-free network, “scale-free” in the sense that there no one “scale” of connectivity among 
nodes or agents is more prevalent than another. This means that, unlike the case of the random 
graph with its normal distribution of nodes with k number of links in relation to the number of 
links (k), in a scale free network there is instead a so-called power law distribution with many 
nodes having only a few links, a moderate amount of nodes with a moderate amount of links, 
and a few nodes with many links (Barabási, 2002). A prime example of a scale-free network is 
the network of linkages making-up the world wide web in which there are many websites with 
few linkages to other sites while there are a few central hubs with extremely many links such 
as google, yahoo, or facebook. Scale-free networks tend to consist of densely connected crucial 
hubs which themselves are multi-connected to outlier agents or nodes on the periphery (Holley, 
NDa, NDb). In fact, recent ground-breaking research, relying on advanced brain imaging 
techniques, has demonstrated the existence of mult-hub/periphery - scale-free networks of 
axons connecting major centers or modules of the brain with more outlying centers of neuronal 
activity in the human cerebral cortex (Hagmann, et. al., 2008). 

 One of the disadvantages of scale-free networks can be called the “rich get richer“ 
syndrome found in developing complex systems:  the multi-connected nodes tend to grow even 
more links while the peripheral, minimally connected nodes or agents remain static in the few 
number of connections they already have. The social network researcher Gregory Todd Jones 
(2007) points out that this may translate into a greater marginalization of communities unless a 
concerted effort is made to connect to the peripherally marginalized (see also Goldstein, Hazy, 
and Silberstang, 2008).  

 The idea of rapid information exchange along connected networks is an idea that is 
central in the papers by Bolton & Stolcis, Lapão, and Verdon. 
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Differences 
 
 It must be recognized that any kind of social (or other type of) network can only carry 
information from one agent to another when these agents possess significant differences from 
one another since without these differences all that would be propagated along the network 
would just be more of the same. The term “difference” as it is being used here was concisely 
delineated by the British polymath Gregory Bateson (2000), one of the early systems and 
complexity thinkers emerging after WWII, who defined information as “a difference that 
makes a difference.” Perhaps the clearest and most insightful research on “differences that 
make a difference” in human systems was conducted by the complexity-oriented economist 
Scott Page (2007) who demonstrated, through computer simulations, modeling, and actual 
social experiments, the critical role played by differences in perspectives, differences in 
interpretations, and differences in conceptual representations on creative idea generation and 
problem-solving in groups.  

 Indeed, one of the chief ways of distinguishing a complex from a simple system is the 
presence in the former of a huge amount of differences distinguishing one agent from another. 
Of course, the presence of this plenum of differences in a complex system renders such 
systems difficult to predict and control. At the same time, though, it is the interactions among 
the differences characterizing the agents, the mixing and recombination of these differences, 
which gives complex systems their potential for self-organization and emergence into new 
patterns with new properties, the subject of the next section. Along with the presence of a great 
deal of differences, complex systems also require means for bridging or exchanging 
information across these differences plus strong enough boundaries or containers to contain the 
power of such exchanges (see Eoyang & Olsen, 2001; and Goldstein, 1994).  

 In biology, evolution depends on difference-generation in genetic material by way of 
two mechanisms: random mutations which change genetic material into something different 
than what is inherited; and recombination which also changes inherited genetic material as 
found, e.g., in sexual reproduction or symbiogenesis (for the latter see Margulis and Sagan, 
2002). These difference-generating mechanisms are what lead to the novel traits that may help 
a species become more adapted to changes in the environment.  

 Computer simulations known as cellular automata and artificial life, two experimental 
arenas where emergence is of key importance, utilize similar mechanisms of randomization 
and recombination in generating differences that eventually show up as new computational 
emergent patterns (Holland, 1998). Cellular automata and artificial life are the sources of the 
kind of simulations and agent based models found in several of the papers in this Special Issue 
including the ones by Johnston, et. al. and indirectly in the papers by Sabelli and Thomson. 

 The idea of difference is also fundamental to the type of gradients resulting in self-
organization in physical as well as social systems which will be discussed in greater detail 
below. Suffice it for now to point out that it is through an impetus in bridging both internal 
gradients as well as gradients between systems and their environments that complex systems 
may self-organize into new patterns. That is, the presence of differences and the consequent 
propensity to overcome them act as both a kind of fuel and a “push” that leads certain complex 
systems to innovate.  

 Such experiments in innovation often stem from differences between the peripheries 
and the more central modules of complex systems, which as will be recalled from the previous 
section, can be connected by way of networks. Differences in the behavior at the literal 
geographical periphery as well as the more metaphoric “periphery” in the sense of being 
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outside the normal way of doing business, can be the seed bed of social experiments which try 
out new social practices possibly containing the seeds of improved adaptability on the part of 
complex systems.  

 One of the most exciting social methods for exploiting the role of such differences as 
the germination for solving what seem to be intractable social problems is that of Positive 
Deviance developed by Jerry Sternin (Bertels & Sternin, 2003). Basically, Positive Deviance is 
a method for identifying spontaneously occurring experiments in innovative social practices at 
the “peripheries” and then disseminating these experiments as solutions to social challenges 
without at the same raising opposing forces that resist or reject the innovations.  In this Special 
Issue, the paper by Lapão discusses “risky zones” of experimental innovation in health care 
organizations, innovations leading to collaboration, even a kind of self-organization of clinical 
services. In Lapão’s paper, it is quite interesting that such experimental dynamics are of help in 
both finding emerging diagnostic patterns in patients (like fibromyalgia or diabetes, etc.) as 
well as in re-engineering the clinical service to better adjust to patients’ demands. The paper by 
Hua-ling Song, et. al., also discusses various types of experiments in innovation occurring 
outside the mainstream norms of the organization.  

 An important role of the idea of differences also shows up in the various metrics that 
have been devised to measure the complexity of a complex system. For example, differences 
are at the heart of the metric of “information entropy” which is used in the mathematical 
analysis of the Shandong Mining Company in the paper by Hua-ling Song, et. al.  In order to 
grasp the relationship of differences to this kind of complexity metric, a few words are needed 
about the mathematical field known as information theory developed during and after WWII 
by Claude Shannon and others. Information, as stated above, assumes difference. Indeed, in 
information theory there is a close connection to the idea of entropy in physical systems in that, 
if flow of  information in a channel is to be considered genuine information and not the mere 
propagation of redundancy, it must contain inherent differences inside the message. For 
example, consider sending a message containing the following numerical pattern in sequence: 
7 7 7 7 7 7 7 7 7… Each new seven is the same as the preceding one so there is no new real 
information being sent in the channel and the whole message could have been much more 
economically sent as “repeat the number 7 n times”. Contrast that message with this one: 7 3 5 
8 2 1 9 9 3 7… The latter message contains real information since each new digit is different 
from the preceding one and this difference is, in a sense, unpredictable or a surprise since there 
is no immediately obvious pattern to the sequence. Hence, in Shannon’s formulation of 
information the key was on indicating uncertainty which arose from unpredictable differences 
in patterns. That is why using the metric of “information entropy” in analyzing the complexity 
of a system is akin to knowing how many calculational steps are necessary to make a right 
guess about what is really going on in a system. That is, the complex system is clouded over by 
our uncertainty about it (see Williams, 1997). This is related to the point made above that 
complex systems possess by their very nature an obscuring of our ability to gain knowledge or 
certainty about them. 

Emergence 
Emergence refers to the arising of new, unexpected structures, patterns, or processes in 

a complex system (for a full exposition see Goldstein, 1999). Emergent phenomena are 
understood as existing on a "macro"-level which is considered a “higher” level in respect to the 
“lower” or" micro"-level level components from which the emergents emerge. For example, 
the temperature of a liquid is considered a “higher level” “macro-“ phenomenon since it can be 
observed with a thermometer at the scale of our everyday world whereas temperature is 
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produced by the kinetic energy possessed by the liquid’s molecules moving at the “lower” or 
“micro-“ level that is not directly observable to inspection. 

Emergent phenomena seem to have “a life of their own” with their own rules, laws, and 
possibilities which are radically novel with respect to the lower level components. The term 
“emergent” was first used by the nineteenth century philosopher G.H. Lewes and came into 
greater currency in the scientific and philosophical movement known as emergent evolutionism 
in the 1920’s and 1930’s (Blitz, 1992). In an important respect, the research connected with the 
Santa Fe Institute and similar complexity centers focuses on emergence observed in such 
computational simulations as cellular automata and artificial life and thereby represents 
shifting the study of emergence from armchair philosophical speculations to laboratory 
conditions.  

In organizations, emergent phenomena are happening ubiquitously yet their 
significance is often downplayed or downright neglected by command and control mechanisms 
grounded in the officially sanctioned corporate hierarchy. One of the important lessons for 
leaders coming from complex systems theory is how to facilitate emergent structures and take 
advantage of the ones that occur spontaneously. 

 In complexity theory emergence has customarily been coupled with the idea of self-
organization or the supposedly spontaneously occurring, bottom-up arising of new order in a 
system. The idea of self-organization as such turns out not to be a new one since notions of it 
can be found as far back as in the work of Descartes (Shalizi, 1996) as well as later in the 
Naturphilosophie thinking of Kant and particularly in the Romanticist Idealism of Friedrich 
Joseph Schelling (Heuser-Kessler, 1986). 

The idea of self-organization puts the emphasis on how new emergent structures, patterns, and 
properties arise without being externally imposed on the system. The “self-“ of “self-
organization” connotes this lack of external imposition and thus indicates similar properties 
such as being innate, natural, and spontaneous. Self-organization achieved prominence in 
studies of emergence in simply physical system whose conditions have been described as "far-
from-equilibrium" in the thermodynamics approach founded by the Nobel laureate Ilya 
Prigogine and his followers (Nicolis, 1989) or in terms of “order parameters” in the approach 
known as the Synergetics School founded by the German physicist Hermann Haken (1981).  

 Recently, this author has questioned some of the “folklore” surrounding the idea of 
self-organization especially the belief that it is a naturally occurring spontaneous phenomena 
(Goldstein, 2007a). Instead, emergence has been decoupled from self-organization as such 
since the arising of novel emergent order with novel properties requires the presence of many 
constraining factors with the result that emergence is now thought of as a type of 
constructional activity in which lower level patterns and properties are transcended.   

 

Emergence in Simulations and Agent-based Models: Emergent phenomena as macro- or 
collective level dynamics are one of the important elements found in the simulations and agent-
based models used in several of the articles in this special issue. An agent-based model refers 
to a computer simulation in which key factors or variables in the complex system under 
investigation are represented by agents in interaction with one another, these interactions 
following certain programmed-in rules of interaction (Axelrod, 1997). In the agent based 
models, for example, utilized in the paper by Erik Johnston, Ning Nan, Wei Zhong, and Darrin 
Hicks, game theory simulations are used to research collaborative alliances by examining the 
emergent phenomena arising during the simulations.  
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 Game theory (for an accessible introduction, see Davis, 1983) consists of two or more 
persons or agents “playing a game” in which the parties involved negotiate or interact with 
each other to achieve certain payoffs. Thus, in one of the most famous of such games known as 
the Prisoner’s Dilemma, two suspects of committing a crime together are placed in separate 
cells. The rule is that each of the suspects may confess or remain silent with each knowing the 
possible “pay-offs” to each of the actions. One pay-off is that one suspect confesses while the 
other does not, the one confessing turning state’s evidence and going free while the other goes 
to jail for twenty years. A second possible pay-off is that both suspects confess and they both 
go to jail for twenty years. A third possible pay-off is that both remain silent with each going to 
jail for only a year for a lesser charge. The question then is what the prisoners should do to 
optimize their pay-offs. A game theory simulation of the Prisoner’s Dilemma can be repeated 
many times with emergent dynamics arising out of the agents’ learning of the possible pay-offs 
occurring each time the game is played.   

 The study of emergence in computer simulations need not be confined to game 
theoretical situations. Thus, in the article by Thomson, we find a computer simulation of the 
processes involved in the diffusion of innovation. Simulations can also involve computational 
graphic displays of calculations involving certain nonlinear dynamical equations like the “bios” 
equation described in the paper by Sabelli. In computer runs using this particular equation 
emergent behavior and its properties, e.g., novelty, can be observed as the equation is iterated 
over time. 

 Emergence is also of prime important in the collective level phenomena found in 
market economies described in the paper by Verdon, who expands upon Adam Smith’s 
original postulations about the dynamics of “free” markets in the direction of our networked 
new world. Indeed, the study of this type of macro-level dynamics was pioneered forty years 
ago by the economist Thomas Schelling (2006). Again, this collective behavior is found in the 
game theoretic simulations in the paper by Johnston, et. al. mentioned above, where 
“decentralized interactions among autonomous actors can lead to system-level regularities.”  

 At the same time, though, that attention to emergence shifts interest toward macro-level 
dynamics, the micro-level determinants of the macro-level also require investigation. That in 
fact is the focus of the paper by Silberstang & Hazy who explore the micro-level enactments 
that go on to make up leadership on a more collective level. 

Such a mixture in studying macro- and micro-levels, even simultaneously, follows a 
methodological suggestion concerning the study of complexity made by the Nobel laureate and 
trailblazer in the study of complex systems, Herbert Simon (1981: 86): “in the face of 
complexity, an in-principle reductionist may be at the same time a pragmatic holist.”  

 

Attractors 
 The idea of an attractor is a central conceptual and methodological linchpin of the 
mathematical field known as nonlinear dynamical systems theory (NDS), one of the crucial 
conceptual and methodological underpinnings of complexity theory in general (along with such 
other mathematical disciplines such as graph theory which underlies the study of social 
networks, information theory, and the study of cellular automata which initiated the fascinating 
study of artificial life at the Santa Fe Institute and other centers of complexity research). NDS 
arose out of the ground-breaking work of the celebrated French mathematician Henri Poincaré 
a century ago and then was developed through the work of many esteemed mathematicians 
including Liapunov, Andronov, Birkhoff, Cartwright, Peixoto, Smale, Arnol’d, May, 
Feigenbaum, Yorke, Li, and many others (see Abraham & Shaw, 1984; Diacu & Holmes, 



              The Innovation Journal: The Public Sector Innovation Journal, Volume 13(3), 2008, article 1. 

 11

1998). The ability to pictorially represent the evolving status of a dynamical system made 
possible the advent of micro-computers and their amazing graphics capability elevated the 
study of attractors as well as NDS in general.   

The meaning of the “nonlinear” part of NDS was discussed in the introductory section 
above as a designation for a disproprotionality between cause and effect in complex systems. 
More particularly, the term refers to the nonlinear type of equations studied by NDS (see Scott, 
2005). The “dynamical” part of NDS refers to the way that systems modeled by these nonlinear 
equations exhibit a kind of evolution or development through a series of different phases, the 
behavior of each constrained by its “reigning” attractor(s). Such phases and their attractors can 
be likened (very loosely) to the stages of human development: from infancy through 
toddlerhood through childhood through adolescence, young adult hood, adulthood, and 
seniority.  

Each or phase stage has its own characteristic set of behaviors, developmental tasks, 
cognitive patterns, emotional issues, and attitudes (although, of course, there is some variation 
among different peoples and cultures). The attractors dominating each phase denote the long-
term and not the transient behavior happening during that stage. This means that attractors are 
designations of the stable dynamics of each phase in that if the dynamics is temporarily 
perturbed it will eventually come back to that behavior consonant with the reigning attractor. 

 Technically an attractor is a pattern in an abstract mathematical space called a phase or 
state space which is a way of representing the relationship of the key variables to one another 
that differs from a time series of data points. A time series on a Cartesian graph (the typical x 
and y axes) usually displays change in time on the x- axis and one or more variables on the y, z, 
w,.. axes. For example, capital markets are customarily depicted with time on the horizontal 
axis (e.g, 15 minute intervals, days, weeks, years) and prices on the vertical axis. The recent, 
very dismal charts of the stock prices of Citigroup or General Motors zig zagging downward to 
the right over the past several months are examples of time series. But so are the more 
promising zig zagging downward graphs of the price of crude oil!    

In a phase or state space diagram, however, there is a simple revision of how to 
graphically depict and therefore understand the relationship among key system variables. 
Instead of plotting one or more variables on the y-axis against time on x-axis, phase space 
simply plots key system variables against each other, e.g., the speed of a pendulum’s bob on 
the horizontal axis with distance from the vertical resting place on the vertical axis. In such a 
phase space diagram, time is now only implicit. This simple move, though, provides a spatial 
or geometrical view of the system’s dynamics as they change over time. In that way, the 
“portrait” made in the diagram of the changes in the variables over time supplies a spatial view 
of temporal dynamics which can provide insights not as easily seen in time series charts (see 
Abraham & Shaw, 1984, Guastello, 1995, and Winfree, 1987, on how temporal dynamics can 
be insightfully captured by the spatial patterns of phase portraits). The dimensions of a phase 
or state space correspond to the number of variables that are considered important to study 
dynamics of the system.  

Typically, attractors come in three varieties: fixed point which refers to a point toward 
which the trajectories made up of the data points converge; limit cycle or periodic attractors 
which refers to an oval or circle or set of ovals and circles towards which the trajectories 
converge; chaotic attractors which are very complicated multi-dimensional phase portraits of 
systems exhibiting technical “chaos” popularized by so-called “chaos theory.”  

 Chaos is a particular type of system dynamics characterized by being deterministic, that 
is, unfolding in determined manner from one state to another without any necessary 
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incorporation of randomization yet shows a pattern hardly distinguishable from one generated 
by a totally random system. Moreover, chaos has the property known as sensitive dependence 
on initial conditions which in popular parlance goes by the name of the “butterfly effect”, that 
is, the notion that the system is so nonlinear a very small change like the wind produced by the 
flapping of a butterfly’s wings in Brazil may later cause a thunderstorm in Kansas (Lorenz, 
1993). Moreover, chaotic attractors may also be “strange” meaning their spatial patterns in 
phase space have a fractal structure (although technically there is not a complete equivalence 
between chaotic and strange attractors). The discovery that chaotic attractors could be strange 
was startling since one area of mathematics know as fractal geometry (Mandelbrot, 1992) was 
shown to be intimately to another one, i.e., the study of dynamical systems. The way in which 
two previously separated realms of mathematics are shown to have a close relationship is not 
uncommon and often signals a leap forward in mathematical understanding. Although the 
words “chaos” and “complex” are close enough in meaning that they are sometimes used 
interchangeably in complexity theory, it is important to keep in mind that they in actuality refer 
to quite different dynamics. Few complex systems can be characterized as chaotic in the 
technical sense and chaotic systems need not possess the other properties of complex systems 
as described herein. 

Sometimes attractors have been seen as “final causes” of a system, following 
Aristotle’s famous scheme of four essential types of causes: material causation or the “matter” 
out of which a system is made; formal causation or the pattern or shape to which a system in 
the long run tends; efficient causality or the immediate precipitating event which initiates new 
dynamics in a system; and final causation or the purpose or end (the “telos” of “teleology”) 
shown in a system’s “design.” The association of attractor with final causation comes from the 
manner in which the very word “attractor” seems to suggest that it is something to which a 
system is drawn or attracted. However, it should be kept in mind that attractors, as abstract 
patterns in an abstract mathematical space, are not appropriately thought of as actual causes at 
all. 

 Because attractors are stable phase space patterns, a system can go through changes 
while under the sway of the same attractors but these changes will need to conform with what 
is allowable by the reigning attractors of each phase. This kind of system change could be 
called “intra-attractor.” However, sometimes a system may undergo a much more significant 
type of change, a phase transition into a new phase dominated by different attractors. This kind 
of system transformation, an “inter-attractor” change, is termed “bifurcation” of which there 
are various kinds. Bifurcations result when there is a change in certain critical parameter values 
toward a threshold. Sometimes this kind of criticalization is known as a far-from-equilibrium 
condition in the study of self-organizing systems which was described above in the section on 
emergence.  

 It can be helpful to consider the difference between “intra-attractor” and “inter-
attractor” change when thinking about the organizational change and innovation described in 
the papers by Glor, Amagoh, and Verdon.  

 The “bios” equation studied in the paper by Sabelli is offered as an alternative to the 
usual emblematic equations used in NDS and chaos theory in particular. “Bios” provides 
several intriguing properties such as novelty and diversification not directly found in the usual 
mathematics of NDS. 
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Conclusion 
 In this introduction to the Special Issue on Complexity Science of The Innovation 
Journal: The Public Sector Innovation Journal some of the main ideas and methods involved 
in complexity theory have been described. Of course, the exposition of these central concepts 
has been greatly condensed for the sake of brevity. The interested reader, though, can follow 
through on most of these complexity notions by means of the many articles and books 
referenced and found in this special issue. 

 Each of the four main complexity constructs discussed above – networks, differences, 
emergence, and attractors – are intimately related to innovation. Thus, innovation can be said 
to diffuse via social networks, innovation can be said to come about through the recognition, 
mixture, and amplification of differences from the norm, innovation can be said to be all about 
the emergence of new structures with new properties, and innovation can be said to involve 
both inter- and intra-attractor change, the deeper the innovation the more likely it represents a 
bifurcation into new attractor regimes. 

 To be sure, complexity theory is a strange brew of the very technical, even the abstruse, 
the descriptive and the wildly metaphoric. This combinatory characteristic of complexity 
science is reflected in the style and content of the papers in this issue. Some of the papers do 
indeed include some very technical material but the authors were asked to relegate such 
technicalities mostly to the appendices. Each of the papers speaks for itself which is a major 
reason why more time was not spent in this editorial introduction describing the content of the 
papers. Complexity science can indeed be conceptually challenging and that is why it is only 
through the careful reading and rereading and mulling over of the ideas that their insights can 
be appreciated. 

 It might be thought that complexity theory consists of a uni-directionality of influence, 
that is, that it mainly concerns the application of the so-called “hard” sciences and mathematics 
in the direction of the “softer” realm of social systems. Yet, this would be a rash judgment 
since a reverse directionality of influence can be discerned in the most contemporary research 
into complex systems, e.g., the study of social networks. Even though social network theory 
utilizes the abstract mathematical theory of graphs (nodes, edges, and so forth), it has been, 
from a deep investigation of actual networks active in complex human social systems that 
many advances in complexity theory have proceeded. This directionality of influence from 
social system back to “hard” science in fact is similar to what took place in the case of statistics 
in the nineteenth and early twentieth century where the study of human social systems led to 
the devising of statistical metrics that were then applied to physics, chemistry, and other 
sciences. Indeed, complex social systems are directly accessible for research without the need 
for sophisticated technologies such as microscopes or telescopes. No doubt, many more such 
advances in complexity theory will be forthcoming from the investigation of complex human 
social systems.  
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