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Abstract 

The diffusion of innovations model (DIM) and complex adaptive systems 

theory (CAS) can be employed together in the construction of predictive or applied 

hybrid models of induced change in population behavior. In such interventions, 

differentiated heterogeneous zones may act as catalysts for the adoption of 

innovation. The present study explores the actual and potential hybridization of these 

two systems theories, relying on illustrations from historical practical applications of 

DIM, particularly the STOP AIDS communication campaign in San Francisco. 

The resulting co-theoretical model provides an analytical tool for students of 

innovation, particularly in the public sector, and especially in applications of network 

analysis predicated on a crucially defining feature of social networks, namely “the 

strength of weak ties” among their members. In cultivating network ties among 

heterogeneous groups connected by common aims, it is here argued, the innovator 

may prompt and, to an extent, guide the complex emergence of innovation adoption 

in social systems. Commonalities in the concept of heterogeneity in CAS and in DIM 

is explored in depth, along its many dimensions, including membership and role 

heterogeneity, with a view to preliminary operationalization of diffusion-

management principles. 

Keywords: diffusion, innovation, complexity, complex adaptive systems, chaos, 

AIDS, health, power law, heterogenous, homophily, heterophily, networks, social 

networks. 
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COMPLEX ADAPTIVE SYSTEMS AND THE DIFFUSION OF INNOVATIONS 

Complex Adaptive Systems, Linearity, and Non-Linearity 

The Complex Adaptive Systems (CAS) Model was born of the scientific study of complexity. 

According to James Gleick, the inspiration for complexity science can be traced to John von 

Neumann’s dynamic weather system models of the 1950s at the Institute for Advanced Study in 

Princeton, New Jersey, an effort that, in turn, goes back to the work of the eighteenth-century 

philosopher-mathematician Laplace (Gleick, 1987, p. 14). The diffusion of innovations model, 

credited to Everett Rogers, delineates the process by which an innovation spreads via certain 

communication channels among members of a social system (Rogers, 2003). Diffusion phenomena 

bear a resemblance to complex adaptive systems. The purpose of the present study is to explore the 

relationship of the diffusion of innovations model and complex adaptive systems theory, and to 

consider the potentialities of a hybrid systems approach to managed innovation. 

In order to discuss complex adaptive systems, one should first define simple linear systems 

by way of contrast. “In linear systems the relationship between cause and effect is smooth and 

proportionate. Linear systems respond to big changes in a big and proportionate manner and linear 

systems respond to small changes in an equally small and proportionate way” (Kiel, 1995). Most 

real life situations, on the other hand, are complex. Small changes in initial conditions, and later 

interventions of whatever size, can result in disproportionately large effects. 

A quadratic equation can demonstrate the transition of behavior from simple to complex 

regimes, and from complex regimes to chaotic ones. The equation is parameterized by 4>a>0, and 

s∈[0,1] where “s” is an infinite sequence of binary variables that describe the system—we will 
examine the quadratic equation f(s) = as(1-s). Simple systems are those systems where a<1. In 

simple systems s=0 (Bar-Yam, 1997, pp. 26-33) there is no fluctuation between states, and as a 

result all changes in the system are simple and occur linearly. However, a complex adaptive system 

comprises multiple agents dynamically interacting in fluctuating and combinatory ways, following 

local rules to maximize their own utility while also maximizing individual consistency with 

influences from network neighbors (Klein, Sayama, Faratin and Bar-Yam, 2002). 

Complex systems are about relationships among members of a system, here taken to occur at 

1<a<3. In a complex regime, utility-maximization rules may make for movement from lower to 

higher levels of group cohesiveness and order. That order is marked by emergent self-organization, 

in relation to complex-network synchronization that is enhanced by heterogeneity (Motter, Zhou 

and Kurths, 2004). When the resulting system can create emergent behavior capable of response to 

the environment, it is adaptive (Johnson, 2001). Beyond these parameters chaos begins, such that at 

3<a<3.56994567 “there is a bifurcation cascade with 2-cycles then 4-cycles” (Bar-Yam, 1997, p. 

33) and increasing splitting and bifurcations, until at a=4 cycles become chaotic (Kiel, 1995). 

Nonlinearity is a constitutive feature of complex adaptive systems. 

The Diffusion of Innovations Model 

The diffusion of innovations model (DIM) is concerned with how innovations, defined as 

ideas or practices that are perceived as new, are spread (Rogers, 2003). Diffusion is the process 

through which an innovation spreads via communication channels over time among the members of 

a social system. This is a social sciences definition of diffusion, one that is not to be confused with 

the thermodynamic definition of diffusion. Diffusion occurs in complex systems where networks 
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connecting system members are overlapping, multiple, and complex. Diffusion occurs most often in 

heterogeneous zones, i.e., transitional spaces where sufficient differentiation among network 

members comes to obtain. Such heterogeneous network connections, which comprise the 

innovation-diffusion system, occur among innovators and other engaged members of target 

populations who, in Rogers’s original formulation, are called “cosmopolites.” Cosmopolites are 

locally networked system members with heterogeneous weak ties to outside systems. 

The first important diffusion studies were conducted some sixty years ago by rural 

sociologists who investigated the adoption of hybrid seed corn among Iowa farmers. In the ensuing 

decades, diffusion study has spread to public health, communication, marketing, political science, 

and most other behavioral and social science disciplines. To date, more than 5,200 diffusion studies 

have been published (Rogers, 2003). Diffusion investigations have typically focused on the order in 

which relatively cosmopolite and heterogeneous individuals, organizations, or other units in a 

networked system adopt an innovation in a synchronous manner. Most of the innovations studied 

are technological in nature, but some are policy or other social-learning innovations. An example of 

policy innovation research concerns which of the fifty states in the United States adopt new 

programs and policies first (and thus are most innovative), which states follow this lead directly, 

and then which ones follow it indirectly (Walker, 1996). A key finding is that the states with the 

most heterogeneous or variegated network links to adopter states are the most likely to adopt policy 

innovations. 

Diffusion scholars have also studied why some innovations spread relatively rapidly while 

other innovations do so relatively slowly. Innovations that are perceived as (a) relatively 

advantageous (over ideas or practices they supersede), (b) compatible with existing values, beliefs, 

and experiences, (c) relatively easy to comprehend and adapt, (d) observable or tangible, and (e) 

divisible (separable) for trial, are adopted more rapidly (Rogers, 2003).  

General Comparison of the Two Models 

CAS and DIM are similar in several respects, and in a sense coterminous, since they share 

the ends of adaptation and adoption (emergence). The endpoint for complex adaptive systems is 

emergence out of disorganization into a more ordered system, with more adaptable patterning and 

better fit. The usual aim for a managed diffusion-of-innovations program is to effect a faster rate of 

adoption of a new idea or practice, resulting—it is hoped—in a higher-order, fitter system. It is at 

the threshold of criticality in both systems models that heterogeneity (adoption, mutation, or 

change) is rewarded, as members increase both individual utility and interdependency (Klein, 

Faratin, Sayama and Bar-Yam, 2003). Coalescence occurs at a point where individuals have risen to 

the group threshold of fitness and adaptation. It is also possible, however, for there to be collapse 

instead of development into a fitter large-scale system. Collapse often occurs because members 

were inhibited in their ability to adapt interdependently, failing to rise together to the minimum 

threshold of fitness required for adaptation or adoption. 

Both DIM and CAS models are built on empirical observation of change, both can describe 

transitions occurring either naturally or as a result of directed change, and both can be statistically 

analyzed to infer population parameters for processes of change. Diffusion theory is concerned with 

change occurring among human agents or nodes in an interconnected network of communications, 

yet it can easily incorporate nonhuman intervention devices such as mass media or electronic 

technology as reactive agents (with reactivity defined as sensitivity to change). Similarly, complex 

adaptive systems may consist of human agents or nonhuman factors (such as epidemics, cells, and 

acts of nature), and even inorganic nodes (ideas, machines, computers, or information webs) in a 
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reactive network. While CAS models originated principally in the physical and biological sciences 

and DIM in the behavioral and social sciences, they have converged to include or apply to a wide 

range of human (social) and nonhuman systems. 

Comparing the Mathematical Foundations of the Two Models 

Working models of either complex adaptive systems or diffusion processes prohibit hand 

calculations and require computer analysis when scaled to full size. Diffusion of innovation models 

were originally constructed and plotted in two dimensions (the number of adopters occurring over 

time) employing multiple-regression techniques and calculus-based rates of change. These early 

calculations of variables correlated with innovativeness (the degree to which a unit in a system is 

relatively earlier than other units in adopting an innovation or innovations) became cumbersome 

when a large number of independent variables were included in the analysis. Longitudinal computer 

simulations of diffusion processes have been conducted, but this approach is yet to make significant 

contributions to the understanding of innovation diffusion. 

It is impossible to calculate the mathematics of a full-scale working model of a complex 

adaptive system by hand. Stuart Kauffman started designing rudimentary CAS models on paper in 

1963 while in medical school, but it was not until he gained access to a computer that he was able to 

work iterations at scales that would properly test his theoretical model. If his theory had been 

incorrect, or if his trials had not evidenced self-organization in early iterations—reaching points of 

criticality in transitional heterogeneous zones—his computer would not have been able to process 

the possible maximum number of iterations—10 to the 29th power (Waldrop, 1992). 

The mathematics necessary to identify a complex adaptive system’s strange attractor 

(“strange” because it is orderly when it is expected to be random; attractor because it “attracts” or 

draws order to itself out of seeming chaos), called phase-space reconstruction modeling, requires 

computer analysis. A strange attractor is a three-dimensional plot of the “thumbprint” of a CAS that 

is derived from a phase-space reconstruction. In a simple system, a basin of attraction is formed like 

a depression in a three-dimensional space. The behaviors of individuals in the system gravitate to 

the basin like water flowing to a valley. In CAS, dynamics “may be described in terms of cycles and 

attractors” where space-time is found to be insufficient to account for the number of iterations of 

necessary cycles; thus it is found that part of the strange attractor lies in a fractal dimension (Bar-

Yam, 1997, p. 116, and personal communication January 4, 2005). 

Reconstruction of a CAS requires a minimum of three differential equations plotting the 

changing relationships among three variables, and the resulting attractor is plotted in three-

dimensional space. Although it partially exists in another fractional dimension, the four dimensions 

are collapsed into three for purposes of illustration. Strange attractors in CAS will be discussed in 

this paper in terms of their influence on large-scale behavior, and simultaneously the behavior at the 

micro and individualized system level that gives rise to large-scale behavior. 

An example of phase-space reconstruction in epidemiological modeling was provided by 

Aron (1990), who demonstrated the effects of introducing a vaccine into a standard, seasonally-

forced population composed of what he called susceptibles, latents, infectives, and those who had 

become immune. As more and more members of the population were immunized, the vaccine 

inhibited the attractors of the disease (and its ability to self-organize or diffuse). Timing of the 

introduction of the vaccine was critical—if introduced at the wrong time, for example too late, it 

would lead to a weak change in the constellation of attractors, and that might still allow the disease 

to propagate according to its power law. This is because at earlier stages of diffusion, countering the 
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disease requires a smaller number of vaccinations. Introducing a vaccine into the population early, 

timed to inhibit spread, is equivalent to introducing an innovation early, with diffusion able to 

perturb the social system and alter the shape of the attraction basin as desired. If vaccinations are 

introduced late in the spread of disease, after the basin of attraction grows and is strongly 

reinforced, then inhibition of the disease would require many more vaccinations. 

Time Asymmetry and Reversibility in CAS and DIM 

One test of a CAS is time asymmetry. Asymmetry in time occurs when a system passes a 

bifurcation point, a pivotal or decisional point where an option is taken over another or others, 

leading to time irreversibility. Irreversibility means that the system cannot be run backwards—

rewound or reversed—so as to reach its exact initial conditions. Systems which, when run in 

reverse, do not necessarily or typically return to their original state are said to be asymmetric in time 

(Prigogine, 1997), and asymmetry in time is important in testing for a complex adaptive system. If 

system-time is symmetric in both directions, then it is reversible, and it is not a CAS but a 

deterministic system. Complex adaptive systems are asymmetric in time, irreversible and 

nondeterministic. So, in a CAS one can neither predict nor “retrodict,” even with infinite 

information on initial conditions, because the system “chooses” its forward path. Its “choice” is 

indeterminate, a function of statistical probability (Prigogine, 1997) rather than certainty. 

Diffusion, like CAS, is asymmetric in time, irreversible, and nondeterministic. Time is an 

essential element in the diffusion process—indeed, the S-shaped adoption curve is graphed as the 

rate of adoption over time (Figure 1), and adopter categories are assigned on the basis of time 

(Rogers, 2003). At first glance, time might seem reversible in the diffusion process. The growth of 

an undesirable idea (such as use of a dangerous drug) can be halted or slowed using principles of 

diffusion theory. Analogously, certain manipulations may retard the complex adaptation, or self-

organization, of a system. They do so basically by decreasing system variety and reactivity, building 

barriers to heterogeneous interaction and removing therefore the prerequisites for complex-adaptive 

(self-organizing) activity. In neither instance, DIM or CAS, however, is there no true time-

asymmetry, or reversibility. Even if there is complete discontinuation of a given practice, one 

cannot return to the conditions extant before the given innovation was introduced. The drug 

Thalidomide, for example, was banned once its dangers became apparent, but its social impacts, 

particularly its effects on mothers and their “thalidomide babies,” could not be undone. 

Variety, Reactivity, and Heterophily in the Two Models 

Variety and reactivity are prerequisites of CAS (Waldrop 1992, p. 314). Variety is defined in 

complexity science as a large enough and diverse enough precondition or population for emergence 

and adaptation to occur. Variety is found in diffusion theory as heterophily, or degree to which 

individual communicators differ along traits pertinent to predisposition toward adoption. A very 

high degree of heterophily will likely slow down diffusion, but some degree of heterophily among 

communicators is nonetheless necessary for an innovation to spread (that is, a source individual 

must know more, and is assumed to know more. about the innovation than a receiver one). Thus 

heterogeneous interactions occur in heterogeneous zones—as suggested previously, locations where 

members, in their variety, can react more sensitively, increase their fitness, and change in a way that 

enhances chances for survival or forestalls threats of extinction. 

Reactivity in CAS entails sensitivity to change, which increases immediately before 

cascades between steps at system bifurcation points. Cascading mutation/extinction, or changes in 

individual species, results from reactivity to change and continues in step-like punctuated equilibria 

that approach the critical point of self-organization (in heterogeneous zones). There is a gap that 
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grows between these avalanches of mutations and step-up plateaus in systemic fitness thresholds. 

As fitness thresholds or plateaus step higher and higher, the cascades of change (between 1<a<3 and 

3<a<3.56994567 in the quadratic equation f(s) = as(1-s)), with their draw on disposable resources, 

become larger and larger. Only those species (population categories) with sufficient disposable 

resources (adaptability to change) can survive at the higher fitness thresholds that occur during 

change cascades. In this view, only those capable of self-organizing emerge as “select.” The 

cascading continues until the envelope function reaches the critical value fc of the system (Paczuski, 

Maslow and Bak, 1996), and it then stabilizes as a complex system. 

The power law is discussed in more detail in the next section, The Movement Toward 

Criticality. When nonlinear (complex) values of mutations/extinctions (self-change) are plotted in a 

quadratic iterative map s(t) = as(t-1)(1-s(t-1)), rewritten as f(s) = as(1-s) (Bar-Yam, 1997, p. 26), 

bifurcation may continue until the system falls into chaos (Bar-Yam, 1997, p. 33). Similarly, in the 

DIM, innovations diffuse more rapidly and successfully in highly reactant social networks, through 

relatively heterogeneous early adopters, who have the highest level of adaptability to change. They 

typically have high levels of disposable resources (high socioeconomic status), relatively more 

exposure to adopters from other social networks, and the inclination to try new ideas (personality 

values and cosmopolite communication behaviors) (Rogers, 2003, p. 288). 

The highest reactivity across all adopter groups is found at the critical mass inflection point, 

point 2 on the S-shaped diffusion curve (figure 1). This is where cascades of change occur. The 

diffusion curve can be thought of as a smooth curve that passes through the step-up plateaus in 

systemic fitness thresholds. As the curve rises, certain thresholds are passed for adoption networks. 

These rising thresholds evoke adaptation (in the case of early adopters) or loss (for laggards). 

Granovetter (1978) discusses thresholds in terms of eliciting a critical mass of collective behavior. 

Critical mass is reached at the point where there are enough adopters that further diffusion becomes 

self-sustaining (Rogers, 2003). At the height of the adoption curve, the fittest members of the social 

network have self-organized (adapted) to the higher plateau of fitness and adopted the innovation. 

Bifurcation, or decision, points have been passed on the way at step-like critical-mass thresholds. 

Unfit adopters, those without sufficient capability or inclination to adopt, have been precluded from 

participating in the adoption of the innovation. 

DIM requires a lower threshold of variety than CAS, yet some variety is necessary in order 

for information exchange to take place between an innovation sender and an innovation receiver. 

The functionality of heterophily and variety is consistent with Granovetter’s strength of weak ties in 

networks (1973). A related finding of recent diffusion studies is that an innovation has a more rapid 

rate of adoption when it is easy to “re-invent.” Re-invention is the degree to which adopters can 

change a new idea, practice, or technology as it diffuses (Rogers, 2003). 

Before a complex system (a social network, a population, or cognition and motivation in an 

individual) can move into criticality, or complex adaptation, it must have sufficient variety or 

variability (degrees of freedom or heterogeneity), which can be translated as sufficient resources 

and inclination toward new ideas and heterophilous interactivity for internal organization (i.e., 

heterogeneous mutation or adaptation toward self-organization). Similarly, diffusion is more rapid 

and effective (displays a higher degree of contagion) with a higher frequency of contact 

(interactivity) among heterophilous units in a system (Rogers, 2003, p. 19), a requirement that 

corresponds to that of variety in the CAS model (Granovetter, 1973). Both models require 

prerequisite internal conditions for their most favorable functioning, but diffusion can propagate 

reliably in low variety and low reactivity one-on-one environments, while a CAS may not. In some 
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idealized hypothetical simulation, a CAS may begin to propagate if it only has one reactive element 

among a sea of “dead strings,” but in other CAS simulations, such as in chemical reactions, there is 

a threshold floor beneath which propagation of reactivity will not occur. 

In DIM, potential adopters, wholly located on the fringe or edge (the highest reactivity, 

heterogeneous zone) of a system, are seldom certain about whether an innovation is a superior 

alternative to what they already have or do. Thus, potential adopters are not always able to easily 

ascertain the benefits of adoption. This imperceptibility or undecidability contributes uncertainty 

and a lack of guaranteed outcome from the point of view of the potential adopter—uncertainty is the 

degree to which a number of alternatives are associated with the occurrence of an event but the 

relative probability of the alternatives is unknown (Rogers, 2003). Uncertainty is a barrier to 

diffusion, and its antidote is information. A certain degree of uncertainty always characterizes an 

individual’s perceptions of a new idea, practice, or technology, which is one reason why the 

diffusion process occurs gradually. Uncertainty is also a salient feature of complex adaptive 

systems, wherein uncertainty is a barrier to reactivity, and thus to emergence and criticality. 

The Movement Toward Criticality in CAS and DIM 

Criticality is a three-or-more-variable interrelational location toward which complex 

systems migrate, in reaction to higher fitness requirements in the environment, in order to solve the 

problems of increasing complexity in increasingly difficult environments. The problem of adapting 

to increasing complexity is universally recognized as salient in today’s world, as system complexity 

exceeds individual ability to process it sufficiently in real time (Bar-Yam, 1997; Toffler, 1970). The 

movement toward cognitive complexity may not be conscious; it may be an evolutionarily-defined, 

heuristic if-then rule (Waldrop, 1992, “satisficing” in Simon, 1991). 

Rules are structured to identify the direction of system rewards and are important in both 

models. In DIM, these rules are social norms, defined as established behavior patterns and 

expectations for members of a social system (Rogers, 2003). Rules cannot be violated in either 

theoretical model with impunity. Expectancy of rewards also prompts agents in a CAS to move 

towards criticality and to consider heterogeneous ideas despite their uncertainty, or to adapt as a 

strategy to increase fitness. Agents develop strategies for fitness within boundaries, and “some 

strategies work better than others” (Waldrop, 1992, p. 310). Similarly, a population involved in 

innovation diffusion works within rule-sets to shift toward higher adoption rates, as rewards for 

adoption become widely known (and as uncertainty about such rewards for innovation decrease). 

Agents in both models use rules to move toward fitness rewards located at the edge of a 

heterogeneous zone, where criticality obtains. Changing an agent’s strategic fitness has the effect of 

changing the fitness of adjacent agents: “As each agent develops, it changes the fitness landscape of 

all the other agents [in its local network]. . . [When] a handful of species manage to find a 

temporary [local maxima, they are] locked in equilibrium” (Waldrop, 1992, pp. 310-311). Agents 

move with their neighbors at a pace that varies by degree of proximity (Bar-Yam 1997, 2005), with 

the closest network neighbors mimicking movement most closely. Similarly, a synapse is part of the 

fitness landscape of its neighbors and contributes to the fitness of the entire neuronal system. 

Generally, a localized system exhibiting progressive and interreactive change “strategies” in 

movement toward maximum fitness will quit moving toward criticality when it reaches a local 

optimum if it is isolated from the larger population (Waldrop 1992, p. 311). 

From the mid-seventies to the mid-nineties, scientists studied and described different 

phenomena of emergence of CAS out of chaos. Per Bak’s sand pile analogies inspired Stephen Jay 
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Gould and Niles Eldridge’s ideas of “punctuated equilibria” in evolution. Bak worked with both of 

these scientists at the Santa Fe Institute in 1989, where he identified punctuated equilibria as 

indicators of self-organized criticality (Bak 1996, pp. 117-118). Bak also defined the signature 1/f 
noise parameter for a self-organizing system: In 1994, Bak, collaborating with Sergei Maslov and 

Maya Paczuski, discovered the power law: f(t) = f
c 
– A ( t/N)

-I/(y – I ) 

(Bak 1996, p. 169; Paczuski, 

Maslow and Bak, 1996). This power law describes the delta point for “cascades of change,” as in 

the angle of repose of a sand pile (Gleick, 1987; Waldrop, 1992). By way of illustration and 

analogy, Figure 4 shows the power law for new HIV infections after the advent of the San Francisco 

STOP AIDS public education and prevention program. 

The power law is a tool to identify when criticality is reached in a broad spectrum of 

systems such as “stock markets, [chemical solutions],… and interdependent webs of technology” 

(Waldrop, p. 309): “Networks with power-law distributions are often referred to as scale-free 

networks” (Braha and Bar-Yam, 2004, p. 250; Barabasi and Albert, 1999). Maximum fitness, 

depending upon particular sets of boundaries, occurs “right at phase transition … [and] the edge of 

chaos is actually where complex systems go in order to solve a complex task” (Waldrop, p. 313). As 

with CAS’s self-organizing identifiers, the DIM employs measures of criticality and phase 

transition. Criticality and phase transition is to CAS as critical mass is to DIM. 

Arrival at Self-organized Criticality 

Arrival at criticality and phase transition in CAS (critical mass in DIM, as just suggested) 

can occur relatively fast. It can occur immediately, as in sand piles, or very slowly, as in inter-

generational cultural diffusion. In the case of the STOP AIDS program, to be discussed in a section 

that follows, criticality of new HIV infections occurred between 1978 to 1983, as the HIV virus 

multiplied exponentially over five years. On the one hand, the virus reached criticality before the 

STOP AIDS program diffused, and, on the other, the STOP AIDS program reached its own 

criticality or critical mass due to inoculation-like barriers in the form of safer sex practices. 

Per Bak distinguishes between types of self-organizing systems and their differing power-

law exponents as classified by speed of formation. “The distribution of avalanche sizes is a power 

law with exponent 3/2 just like Henrik’s random neighbor model …The punctuated equilibrium 

evolution for a singe species [in the Paezuski-Boettcher model] is …7/4” (Bak, 1996, pp. 166-167). 

Maximum fitness occurs within particular boundaries “right at phase transition … [and] the edge of 

chaos is actually where complex systems go in order to solve a complex task” (Waldrop, 1992, p. 

313). Waldrop’s finding coincides with the present paper’s: Heterogeneous areas are those where 

emergence is likeliest. They are located in the CAS epoch, such as between 1<a<3 and 

3<a<3.56994567 in the quadratic equation f(s) = as(1-s). 

Scale is an important consideration in many fields, as the scale may affect the behavior 

observed, and feedback processes can occur between system levels. Emergence in CAS is a bottom-

up rather than a top-down process, i.e., it goes from lower to higher scales. A number of units—

cells, people, computer networks, synapses—interact locally, and each unit’s actions contribute to 

the emergence of a global property at a higher level of organization and possibility. The sum of 

such microbehaviors produces a macrobehavior, and this global-level behavior feeds back to 

individual units at the lower level (Lewin, 1999). Local interactions are fine-scale-level behaviors, 

while the emergent level gives rise to global-scale behavior of higher-level fitness. 
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The observed system behaviors at these different scales are not necessarily the same. It is 

here where CAS differs from nested or scaled networks. Behavior in CAS is scale-free (scale-free 

qualities of diffusion are discussed in the “Emergence and Feedback” section below). Macroscale 

propagation/adoption does not necessarily negate microscale volition (individual choices and 

propensities toward choice), although group norms from the macro-scale can strongly influence 

individual behavior through circular causation, feedback, and reinforcement. 

Diffusion theory, like CAS, looks at both the fine and global scales of behavior and the 

relationships between them, and it illustrates emergent behavior and feedback when aggregates of 

individual behavior scale up to a similar behavior on a system level. Beginning with the level of 

local interactions, the fine scale, diffusion takes place through a network consisting of individual 

units (potential adopters). The adopter unit can be an individual or an organization (“individuals” 

hereafter, for simplicity). Each individual can be self-located in one of the five adopter categories 

(innovators, early adopters, early majority, late majority, and laggards) and the network provides 

connections through which an innovation spreads (Rogers, 2003). 

As individuals adopt an innovation, their microbehavior contributes to the macrosystem-

level scale of behavior. As the rate of adoption of an innovation accelerates and innovation 

diffusion takes off, emergent adoptive behavior occurs at the system level. As an innovation is 

adopted by additional individuals in a system, a feedback loop occurs in the diffusion process as 

observability and other attributes of the innovation process reduce uncertainties associated with the 

new idea, process, or technology. The progress—initiation and maturation—of adoption is seen in 

linear relationships between the quality and source of new information and a population’s manifest 

propensity toward an adoption decision. This is an example of a scaled network. 

The Micro Scale 

Networks are an essential feature of a CAS. Without them, there would be no system. 

Networks allow the system to solve problems using the large numbers of individual nodes that have 

local interactions with other nodes. The nodes themselves need not be “aware” they are contributing 

to this endeavor. They are following their own micromotivated rule-sets and interacting with local 

network neighbors. Such behavior allows the system to process information, and thus to learn. 

Moreover, CAS networks maintain their global behavior despite individual turnover (Johnson, p. 

2001), even as complex mutual causation occurs at network levels. Diffusion theory is similarly 

dependent on networks in which individuals interact locally with their neighbors. Individual 

adopters are not usually cognizant of their contribution to a higher-scale order; rather, they make 

their decisions about innovations on the basis of their own perceived circumstances. As with CAS, 

network adoption of innovations is maintained despite population turnover, often for generations, 

even as different system levels influence one another. 

An innovation comes into a system from outside, usually via an innovator or early adopter. 

Early adopters (“cosmopolites”) are typically sufficiently respected in their local communities 

(relative to innovators and outsiders) that others are willing to follow their lead. They, then, 

function as role models. An early adopter may also be an opinion leader, and/or well connected, so 

that s/he has above-average network-connectivity in the system (Rogers, 2003). Early adopters are 

therefore highly reactive—heterogeneous—and their behavior is conducive to reactivity in others, 

as they increase perturbation around themselves by virtue of their propensity to innovate. Once 

brought into the system, innovations diffuse through networks of social ties. These links include 

relatively strong ties with opinion leaders and weak ties among social subgroups, which bridge sub-

networks that would otherwise remain unconnected. Granovetter discusses the importance of these 
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interpersonal and inter-group heterogeneous links in the diffusion process in his “strength of weak 

ties” theoretical argument (Granovetter, 1973). 

A key feature of these links is the degree of homophily or heterophily between connected 

units. Homophily is the tendency to selectively interact with and learn from culturally-similar 

others, so that degree of homophily refers to the extent of prior affinity among network actors, 

including proneness to accept innovation. Greater homophily allows for greater ease of diffusion 

(although as previously stated, a degree of heterophily regarding an innovation is required for 

reactivity), while high degrees of heterophily raise barriers to diffusion. At extreme values, high 

heterophily makes diffusion almost impossible, as several studies illustrate (Rogers, 2003). 

In a CAS, as in DIM, the units interacting in a network require a degree of variety—the 

network cannot link identical units. Heterophily provides variety, and information processing allows 

even highly heterophilous pairs to interact, albeit indirectly through relatively more homophilous 

links. The greater the homophily, the less the energy or effort required to transmit information. For 

instance, individuals in a support group who are homophilous in regard to the group subject (e.g., 

alcoholism) do not have to expend undue effort explaining their situation; rather they can invest 

themselves in working directly on their problem. A group of heterophilous individuals (e.g., 

alcoholics and obsessive gamblers) would not be able to work as efficiently. 

An outsider, such as a change agent, needs to expend a large amount of energy or effort 

when the agent and client are overly different in orientations and attitudes toward the given 

innovation. In addition to the specific information the change agent must communicate about an 

innovation, s/he must convey background information about the innovation if it is to make sense to 

potential adopters. Failure to transmit all such information can result in diffusion failure. An 

instance is found in the story of a public health worker who attempted to persuade village women in 

Peru to boil their drinking water (Rogers, 2003). Since the villagers lacked awareness of science, 

she had to convey not only essential information about germs but also the technological and 

scientific underpinnings of the proposed intervention in order to justify her call for boiling water for 

sanitation purposes. Despite two years of intensive effort, the worker failed to prompt water-boiling 

in the village. The cultural gap was too large for communication, and hence diffusion, to occur. 

Uncertainty and suspicion served as protective barriers buffering the indigenous system from 

excessive perturbation, or shock. A social system needs time to absorb new information and 

integrate change so as to maintain a reasonable internal stability. 

The Macro Scale 

In both the CAS and diffusion of innovations models, local interactions in networks lead to 

the emergence of global structures and behaviors at the next-higher level of organization. As 

individual system units adopt an innovation, the innovation diffuses. Micro-scale behaviors—

frequent instances of adoption—create macro-scale phenomena, such as the establishment of a 

consumer product standard. The often-cited triumph of VHS over Beta is a case in point. 

The S-shaped curve represents cumulative adoption over time by members of a system. The 

two plateau segments (early and late in the adoption process, points 1 and 3) of the S-curve are 

relatively stable regions where it is difficult to change the system (Figure 1). These segments may 

be likened to attractors. An example is found in the diffusion of telecommunications innovations. A 

telephone is obviously useless for the first individual to own it, and even with a few adopters there 

persists a stable state of “non-telephony.” However, telephones did diffuse globally with the rapid 

adoption of telephone use, whether through ownership or public-access pay phones. Thus, there was 
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a linear stability plateau at low levels of adoption and usage in the early stage (point 1), followed by 

cascade of change (CAS emergence, point 2), ending in a linear stable stage again (point 3) after the 

market was saturated.  

Figure 1: Phase state transition at point two in adoption and cumulative 

adoption curves compared to points one and three, stable attractor states early 

and late in the adoption process.  

  

The “biggest bang for the buck” (whether in behavior change or chemical reactions) is found 

it n the heterogeneous and most reactive zone, the phase-state where cascades of change occur at the 

most rapid rate (point 2). Cascades of change occur as a system processes new information about an 

innovation, overcomes uncertainty, and in effect, makes a determination that operatively shifts the 

system from one attractor (point 1) to a new attractor (point 2). The state change could be from non-

adoption to adoption of an innovation, or to a defining choice between two competing innovations 

or behavioral norms. Choice at the bifurcation point leads adoption and self-reorganization around 

the adoption, and to arrival at self-organized criticality. Figure 2 compares points 1, 2, and 3 on the 

distribution curves for the DIM and CAS.  

Figure 2: A comparison of distributions for complex adaptive systems and 

diffusion of innovations models. 

  

When does the system as a whole make an adoption-decision? Where does it switch from 

one pre viously stable attractor toward another? The inflection point on the S-curve, about where 

critical mass occurs (Rogers, 2003), is the key point of interest (Figure 1). A continuing increase in 

the number of adopters, or synapses, or processing elements, increases the energy being processed 
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in the local system at the inflection point. Until that point of critical mass is reached on the S-curve, 

the rate of increase in the number of adopters per time unit is nearly linear. Complexity begins at a 

threshold of nonlinearity (So, Chen and Chen, 2005). In the diffusion system’s rate of adoption, this 

critical threshold has also been called the tipping point (Gladwell 2002), a transitional inflection 

point associated with higher system reactivity, where system members are sensitive to change. At 

this conjuncture, the system exhibits the most change (“bang for the buck”) for the least increase in 

energy—corresponding to heightened activity in the heterogeneous zone. Once the rate of adoption 

in a system reaches critical mass at the inflection point, it is difficult or impossible to stop further 

phase transition around diffusion (Figure 1). The eventual flattening of the curve owes to a decline 

in numbers of potential adopters, as the innovation is taken up by more and more adopters, and 

more easily so.  

Emergence and Feedback 

The micro and macro scales are connected, as individual actions aggregate to the macro 

level, al so called the large-scale level of a complex adaptive system. Within this system there is a 

type of feedback (strange attractor) that loops back to influence behavior on the micro or individual 

level. Feedback is a vital component of CAS—a large part of what makes a complex system 

adaptive (Johnson, 2001). As each individual unit makes a decision, that decision contributes to the 

emergence of further decision-action sequences on the macro or global scale. Conversely, the macro 

or large-scale behavior also influences micro behavior through strange attractors, though the two 

levels of scale do not necessarily change at the same rate.  

Whereas a scaled network produces changes similarly at all system levels, a scale-free 

network, a complex network, is one where small changes on the individual level can cause large 

changes on the macro or aggregate level. A scale-free network operates according to the power law. 

We will offer an example of scale-free network diffusion in the discussion that follows of the STOP 

AIDS program. In terms of diffusion, individual adoption decisions at the micro level lead to the 

emergence of innovation adoption by the social system as a whole at the macro level. The S-curve 

and other aggregate measures are depictions of such macro-level phenomena.  

Individual decisions of rejection or discontinuance on the micro level, on the other hand can 

grow to a failure of innovation adoption at the system level and thus to a failure of emergence, 

creating a flattened S-shaped curve (Figure 1). In this context, Rogers spoke of a “KAP-gap” (or 

“Knowledge-Attitude-Practice” gap), which he conceived of as a relatively homophilous zone 

where knowledge and attitudes are favorable toward adoption but insufficient for adoption. Rogers 

emphasized the importance of interviewing non-adopters and discontinuers and asking “why” and 

“when” and “under what conditions” failure occurred, to ascertain the reasons for failure and 

generally evaluate the diffusion campaign. Heterophilous members of a target population can be 

particularly helpful in offering information about determinative attitudes among non-adopters, 

because heterophilous members offer a dual outsider/insider view. Such interviews often led to a 

realization that the diffusion campaign targeted the wrong independent variables due to researcher 

misunderstanding of the culture of the target population—in particular a misunderstanding of that 

population’s unique set of culturally-defined meanings and felt uncertainties. Mistaken attributions 

on the part of designers of diffusion campaigns are usually the cause of diffusion failure, observed 

at the macro level as a marked flattening of tshaped adoption curve (Medina, personal 

communication with Rogers, November 17, 2004). 
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 Feedback from the macro level to individual units occurs in complex adaptive systems. In 

diffusion theory, one route for feedback is observability, as when a potential adopter observes 

influential people, such as celebrities or recognized experts, using the innovation. As the system 

adopts, individual adoptions are observable in this manner to an ever-greater degree, making for an 

increasingly rapid rate of change. The more observable an innovation (for instance, the use of cell 

phones), the easier it is for feedback to work. Poorly-observable innovations, including many health 

prevention interventions, offer less noticeable feedback and diffuse more slowly. Trialability, or the 

opportunity to try a new idea on a small scale or in a short time (with less risk), also allows for 

feedback. A company may distribute free samples so that an individual consumer can try the new 

product, obtaining feedback from the trial. Feedback among individuals at the local micro scale is 

thus important; a primary means of local feedback occurs as adopters (and “rejecters”) share their 

experiences with an innovation with others in their circle of acquaintances. A potential adopter may 

see someone else use an innovation (observability), or a tentative adopter may lend it to someone 

else to try out (trialability). Such feedback reduces uncertainty about the innovation, which may 

lead to more adoption through reinforcement.  

Complexity science helps explain the establishment of order in a population where at first 

appears to be none, and where novelty or exception successfully challenges settled rules. The CAS 

model, like diffusion theory, works well when interrelationships among the members of a system 

are strong and dense, while allowing for action at the level of individual units (Stacey, Griffin and 

Shaw, 2000). For both models, prediction is weak when relationships are weak individuals in a 

system are isolated. CAS models break down or do not work when local units become isolated, or 

when relationships are broken, are locked into equilibrium, or fade out.  

It is argued in this paper that CAS models have the ability to inform diffusion models where 

diffusion processes are irregular. Furthermore, CAS provides an entirely new toolbox with which to 

model the diffusion process, essentially giving researchers a new way to look ‘inside the box,’ with 

a variety of population sizes at the scale of interest. For example, using the hybrid DIM-CAS 

methodology, one of the authors (Medina) is developing models that mathematically illustrate the 

process of attaining critical mass within small-group discussions. These models illuminate group 

norming communication dynamics. Formerly, such a process could only provide descriptive data, so 

that it was essentially a black box with regard to quantitative modeling and prediction. Likewise, the 

diffusion of an innovation amongst larger groups can be modeled with a DIM-CAS combined 

framework in a manner that provides greater insight into the mechanisms of diffusion and adoption. 

In the following section, a co-theoretical model is more explicitly built around an applied case 

study, the STOP AIDS experience in San Francisco.  

Stop Aids 

The STOP AIDS experience in San Francisco from 1984-1987 (Rogers, 2003; 

Wohfeiler,1998, 2002) and subsequent HIV prevention interventions modeled after it (STOP AIDS 

II, 1990 to present), in several nations (Singhal and Rogers, 2003) and in certain social networks 

(Flowers, Hart, Williamson, Frankis and Derr, 2002; Kegeles, Hays and Coate1996; Kelly, 

Heckman, Stevenson, Williams, Ertl, Hays, Leonard, O’Donnell, Terry, Sogolow and Spink 

Neumann, 2000; Kelly, Murphy, Sikkema, McAuliffe, Roffman, Solomon, Winett an Kalichman, 

1997; Kelly, Sogolow, and Spink Neumann, 2000; Kelly, Somlai, DiFranceisco, Otto-Salaj, 

McAuliffe, Hackl, Heckman, Holtgrave and Rompa, 2000; Kelly, St. Lawrence, Diaz, Stevenson, 

Hauth, Brasfield, Kalichman, Smith and Andrew,1991; Kelly, St. LawrenceStevenson, Hauth, 
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Kalichman, Diaz, Brasfield, Koob and Morgan, 1992; Miller, Klotz and Eckholdt, 1998; Sikkema, 

Kelly, Winett, Solomon, Cargill, Rofferman, McAuliffe, HeckmaAnderson, Wagstaff, Norman, 

Perry, Crumble and Mercer, 2000), have shown that the diffusion of innovations model can be 

applied effectively in public health and health policy settings.  

These studies also suggest that planned diffusion closely parallels emergence in CAS. 

iffusion begins in localized areas and spreads throughout a network, increasing in density unit 

adoption spreads. Adoption spreads as more and more members of a social network adopt, meeting 

an adoption threshold (Valente, 1995). In this manner, adopters influence others to adopt (Rogers, 

2003). The STOP AIDS intervention was based on both the diffusion model aon social psychologist 

Kurt Lewin’s strategy of changing behavior in small group networks (Rogers, 1994). STOP AIDS 

employed outreach workers who were gay, many HIV–positive recruit individuals to small group 

training meetings of from 10 to 12 men (Yorke, 2003).   

Meetings were held in homes and apartments along Castro Street and in other 

neighborhoods where gay men lived in San Francisco. Each meeting, led by a gay man (often one 

who was HIV–positive), featured explanation of the means of HIV transmission and of the 

importance of practicing safer sex. Each small group meeting ended with the individuals being 

asked to raise their hands (1) if they intended to practice safer sex, and (2) if they would agree to 

organize and lead a future small-group meeting themselves (Singhal and Rogers, 2003). The 

threshold for individual fitness, and survival, required a change in sex practices. These public 

displays of support for safer-sex practices created a type of emergent, macro-level normative 

pattern, a type of strange attractor for behavioral change in the larger community, and a complex 

adaptive system demonstrating the properties of a scale free network, a complex network.  

Planners of the STOP AIDS intervention assumed that if they could reach a critical mass of 

opinion leaders in the city’s gay community, the idea of HIV prevention would then spread 

spontaneously by interpersonal communication networks to others in the targeted population. 

Arenas, Danon, Diaz-Guilera, Gleiser, and Guimera (2003) found that community-size social 

networks exhibit scaling with a power law exponent in the range of -0.5 or –1. This scaling in the 

STOP AIDS program is illustrated in Figures 3 and 4. Scaling occurred both upwards as the virus 

spread and downwards as it was denied hosts due to safer-sex practices promoted by the program. 

Scaling down occurred at the power law exponent of -1.143, with adoption of a shared commitment 

to safer sex as the message reached critical mass in the city’s gay community.  

This diffusion process can be likened to “the symbolic [cultural] dynamics of a chaotic 

system [in its ability] to track a prescribed symbol sequence thus allowing the encoding of any 

desired message” (Yorke, 2003). Figure 4 illustrates log plots of the cumulative diffusion of 

theSTOP AIDS program and its effects of declining rates of HIV infection, showing a power law 

regime with a fast decaying tail (Braha and Bar-Yam, 2004).  

STOP AIDS reached over 30,000 of the total gay population is San Frisco of approximately 

142,000. The rate of unprotected anal sex dropped from 71% in 1983 to 271987. With the decline of 

this means of transmission, the number of AIDS-related deaths per year dropped from 1,600 in the 

mid-1980s to only 250 in recent years (Wohfeiler, 1998, 2002) The application of diffusion of 

innovations theory, combined with networked Lewinian small- group strategies, in effect created 

strange attractors in large-scale population behavior, i.e., new behavioral norms that attracted and 
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promoted safer-sex behavior. These attractors were evident in the spread of safer sex practices, a 

development that helped stem the epidemic (Figure 3).  

An attitude, defined as a predisposition to action (Rogers, 2003), is, effectively, a reactive in 

the hybrid complexity-diffusion model here proposed. In the STOP AIDS case, the observability of 

the devastation caused by HIV/AIDS in San Francisco changed attitudes towsafer-sex practices 

(developed strange attractors within the large-scale that promoted such practices), and these strange 

attractors sped up the adoption of the innovation. Consequently gay men became much more willing 

to use condoms and to otherwise reduce risky behaviors to preserve their health and attractive looks, 

and to avoid sickness. Attitudes toward safer sex thus became socially embedded in the older gay 

men’s population. Then, as conditions improved and the ravages of HIV/AIDS less visible, there 

came a new surge in infections in San Francisco. As new cohorts of younger gay men arrived in the 

city in the early 1990’s, they identified the previous HIV/AIDS epidemic with the older gay 

community, whom they tended to stigmatize. Unwarranted negative word of mouth about the STOP 

AIDS program among young gays led them to shun adoption, and the adoption threshold therefore 

rose considerably for them (Erez, Moldovan and Solomon, 2004). Furthermore, in their time, these 

young gays could not observethe results of unsafe sex behaviors as readily as had their 

predecessors. The epidemic had been nearly eradicated. Clear-cut benefits to safer-sex adoption 

were less observable (Rogers, 2003). Hence, the younger gays did not adopt safer-sex practices, and 

rates of infection once again increased to epidemic level, until the STOP AIDS program was 

reinstated (Figure 3).  

Figure 3: Changes in new HIV infections in San Francisco between 1977 and 

2000 showing advent of STOP AIDS coinciding with decrease in new infections. 
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San Francisco’s STOP AIDS intervention of the early 1980s was replicated in several 

developing countries (Singhal and Rogers, 2003). One program in the United States that was in part 

inspired by the STOP AIDS model was directed by Jeffrey Kelly and his colleagues (Kelly, 

Murphy, Sikkema, McAuliffe et al., 1997). In several U.S. cities, opinion leaders were identified 

and then trained in how to prevent HIV infection among gay men. Again, the objective was to reach 

a critical mass of at-risk individuals with prevention messages. The opinion-leader strategy is now 

being implemented and evaluated in at least five developing nations (Rogers, 2003). 

Analysis 

The foregoing co-theoretical model links DIM to CAS and provides an analytical tool for 

students of innovation, particularly in the use of public sector collaborative networks. The 

interdependency of innovation networks and the heterogeneity operative in complex adaptive 

systems are complementary. This analysis section discusses in detail how the combined model of 

DIM and CAS offers the possibility of a deeper understanding of diffusion in practice. 

The coterminous processes of innovation-diffusion and complex adaptive systems leads, 

through phase transitions, to a more rapid rate of adoption or emergence, resulting in a higher-order, 

fitter system. Both models are built on empirical observation of bottom-up change, both can 

describe transitions occurring either naturally or as a result of directed change, and both can be 

statistically analyzed to infer population parameters for processes of change. In CAS, the point 

attractor where organization is 100% and complexity is equal to zero corresponds to the same point 

in DIM. At this point, an adoption begins to diffuse, organization is at 100 percent (i.e., the original 

idea is still intact and has not yet been reinvented or reorganized) and the complexity of the social 

network among adopters is zero (Figure 2). It is here, at the beginning of both systems processes 

and at the corresponding point on the S-shaped curve, that the rate of adoption changes little for 

every additional new adopter. The rate of change at the beginning is particularly linear, attesting to 

the given system’s status as a simple system (Bar-Yam, 1997). The rate of adoption changes less 

for each new adopter than it will at point two (Figure 1). 

In CAS, at point two (Figure 2), the area where strange attractors and complex attractors are 

found at the most complex points on the curve is also the highest point on the bell-shaped curve. 

This area corresponds to that in DIM where the adopter network is the most complex, and where 

strange attractors are stabilized. Here there is the greatest increase in rate of adoption (where the 

slope is vertical, point two, Figure 1) for the fewest additional cumulative adopters: There is 

increased sensitivity to change for the least increase in energy expended toward change. This is the 

location of complexity where heterogeneity exists at the border of chaos—that area between simple 

systems and chaotic systems—the area of scale-free networks. 

The disproportionate changes at different system scales or levels identify a scale-free 

network. The rate of adoption changes more for each new adopter than it did at point one, and the 

rate of adoption changes more for each new adopter than it will at point three. At point two, the 

bifurcation threshold has been passed for this population. There is no longer a question of whether 

diffusion will occur throughout the majority of the population: The population will continue to 

adopt due to the momentum that has been attained. Point two, the inflection point on the curve 

(Figure 1), is called the point of critical mass because it is where adaptation has met or exceeded the 

fitness threshold and “further diffusion becomes self sustaining” (Rogers, 2003, p. 343). Point two 
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is another dynamic juncture, a heterogeneous zone where the rate of change is nonlinear. At point 

two, the rate of change is nearly vertical—it approaches closest to infinity. 

At point three in CAS (Figure 2), the area where 100 percent randomness and zero percent 

complexity occur, is the place where infinite attractors are found that cannot be modeled. This area 

corresponds to the same area in DIM, where an innovation has finished diffusing, and therefore the 

system is at zero percent complexity—it has returned to a simple system and is again linear. There, 

perturbations are chiefly associated with resource scarcity or disinclination to new ideas among late 

adopters. At this place in the bell curve, diffusion as well as CAS cannot be modeled (Figure2). At 

the correlating point three on the integral S-shaped curve (Figure 1), there is a flattened rate of 

adoption. That is, late in diffusion the speed of adoption is slowed and there are fewer new adopters. 

The rate of adoption changes less for each new adopter than it did at point two. The rate of adoption 

is stable, and the rate and quality of change is rapidly linear. 

It is evident from the foregoing that both the DIM and CAS models can be used to describe 

behavioral changes in populations as well as other complex systems. The DIM has its strongest 

utility in the spread of new ideas, products, and practices. CAS may have the strongest value in the 

real-time monitoring of complex systems and in identifying early stages of phase transition into 

criticality. As defined previously, criticality or (interchangeably) critical mass is the point at which 

the random activity of unrelated elements in a system suddenly becomes more complexly structured 

and ends-oriented, as self-organization takes over. At criticality, a population’s actions are no 

longer random, but rather take on a certain degree of predictability. 

That phase transitions into higher levels of order can be anticipated, manipulated, and 

evaluated holds out significant promise for new applications in the social sciences and in social 

interventions. Future research might focus on the mathematical definition of zones of heterogeneity 

at the edge of adopter populations, where both uncertainty and sensitivity (or reactivity) to change 

are most acute, where the emergence of new attitudes and habits can be identified, and where 

communicative interventions can therefore be most cost-effective. 

The STOP AIDS innovation spread rapidly because it was perceived by the gay community 

as relatively (a) advantageous over unsafe ideas or practices they superseded, (b) compatible with 

existing values, norms, beliefs, and life experiences, (c) easy to comprehend and adapt, (d) 

observable or tangible, and (e) divisible (separable) for trial and adoption (Rogers, 2003). The 

innovation operated like a vaccine in the CAS model, as more and more members of the gay 

population participated in the STOP AIDS program and adopted safer-sex practices, at the threshold 

of criticality (with reference to both DIM and CAS) where heterogeneity (adoption, mutation, 

change) was rewarded. Adaptation was rewarded as members increased both their individual utility 

(improved life expectancy, reduced fear and uncertainty) and the constancy and consistency of their 

interdependence (Klein, Faratin, Sayama and Bar-Yam, 2003). 

During this complex transition, the utility-maximizing motivational rules (such as increased 

life expectancy) prompted individual-scale and group-scale movement from lower occurrence of 

safer-sex practices to higher levels of cohesiveness and order in group adoption of these practices). 

This new order was marked by emergent self-organization. Group adaptation to safer sex resulted 

from the increasing numbers and effective communication activities of highly-connected sex health 

workers in the community. There was complex-network synchronization marked by role 

heterogeneity (in sustained interaction between health educators and members of the gay 
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community; Motter, Zhou and Kurths, 2004). The resulting heterogeneous system 18 exhibited 

emergent patterned behavior that enabled the social group to respond more fitly to its environment, 

as a complex adaptive system (Johnson, 2001). If the social group was in fact a CAS, then a power 

law analysis should show it to be a scale-free network, one whose activity can be described by the 

power law. To test for this possibility, power law analysis was conducted by fitting a trend line of 

the least squares fit through data points (x, y), where x equaled the number of years since initiation 

of the STOP AIDS program and y equaled the number of new HIV infections. The following 

equation was applied: y = cx 
b 

 where c and b are constants. Power law analysis yielded the 

following equation: y = 10518x 
-1.143 

, with R
2 

= 0.9039. 

Ninety percent of the variance was accounted for by the equation, showing a power law 

relationship between the STOP AIDS program and the sharply declining number of new HIV 

infections. Log plots of the cumulative distribution indicated a power law regime (Braha and Bar-

Yam, 2004). The power law relationship between the STOP AIDS program and the decline in 

number of new HIV infections would indicate that there was a network of short-distance and highly 

connective iterative relationships between the health workers and members of the gay community 

(Braha and Bar-Yam, 2004). Qualitative reports on the program tend to validate this assertion 

(Wohfeiler, 1998). Opinion leaders (highly-connected, influential members of the target social 

group became health workers and influenced large numbers in the gay community. Members 

organized in clusters around opinion leaders, and these clusters were highly connected to each other 

through those leaders. The health communication or diffusion work was iterative, in that it was 

conducted in virtually identical form in many, and often-repeated, small home gatherings. Pursuant 

to these conclusions the following graph, figure 4, depicts the power law fit. 

Figure 4: Power law fit between log of new HIV cases and log of time elapsed 

since STOP AIDS 
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Conclusion 

This conclusion section discusses in widely applicable theoretical terms how the co-

theoretical model of DIM and CAS offers a deeper understanding of the theory and practice of 

diffusion. Recent treatments of STOP AIDS and kindred programs based on diffusion of 

innovations theory suggest that greater differentiation (heterogeneity)—by way of broader 

coalitions of activist groups armed with larger arsenals of proven interventions—makes for greater 

stability, sustainability, and effectiveness (a review of STOP AIDS and related literature is found in 

Bertrand, 2004; see also Wohfeiler, 1998; Essien, Linares and Osemene, 2000; and Wozniak 2001); 

broad-based coalition-building is also the organizational and operational premise of the Global 

AIDS Alliance (Global AIDS Alliance, 2003). This finding, of the need for differentiated advocacy 

organization in the implementation of research-based interventions, is consistent with the 

proposition advanced in this paper that heterogeneous, transitional zones of innovation activity in 

networks can make for sustained efficacy in directed efforts at diffusion. 

Bertrand indicates that “the changes in behavior needed to halt the HIV/AIDS epidemic 

constitute what Rogers has labeled a ‘preventive innovation,’” with the catalytic event occurring 

when “‘trend setters’ in a social network begin to model a new behavior to others [and therefore] 

reduced uncertainty and altered the perception of what is normative … (Bertrand, 2004, p. 115). 

Bertrand adds that as prevention shifts from “predominant focus on individual behavior to 

recognition of the importance of social norms in defining sexual behavior,” innovation diffusion is 

reasserting itself as a leading theory in the fight against HIV/AIDS (Bertrand, 2004, p. 120). 

The increased heterogeneity of AIDS activism is, arguably, a major reason for the normative 

turn in applied diffusion theory. The greater breadth of membership strengthened the normativity 

and credibility of AIDS activism, and, in circular causation, greater credibility helps sustain AIDS 

advocacy. Bernardi (2003) has similarly found that the normative-structural characteristics of 

diverse social networks working in fertility-choice advocacy, and especially the inclusive quality 

and connective density of these family-centered networks, account for their effectiveness. Bernardi 

attributes their effectiveness to social-network synchronization. 

In the CAS model DIM practitioners can now recognize the importance of heterogeneity and 

diversity—in modalities of social action, of ethical and cultural normativity, and of group 

membership—consistent with law of requisite variety (Ashby, 1970), which posits that system 

variation needs to match the corresponding features of environmental demands if organization and 

collective action are to be effective. Acknowledging the centrality of heterogeneity is also 

consistent with Actor-Network Theory, which, along with diffusion of innovations theory, points to 

the alignment of social and technical systems in heterogeneous networks. 

Heterogeneous networks encompass interrelated structures of social relations, social values, 

and behavioral incentives and motivations, creating linkages to multiple chains of influence 

(Avgerou, 2002, p. 61). Arquilla and Ronfeldt (2001, p. 304) likewise argue that multiplicity or 

variety of network membership “permits division of labor and adaptation to circumstances . . . The 

greater the differentiation of groups, the more likely the movement is able to offer something for 

every sympathizer to do to further the movement’s goals.” 

In social action as in scale-free physical networks, heterogeneity enhances connectivity 

distribution and network synchronization. With sufficient differentiation, “synchronizability is 

drastically enhanced and may become positively correlated with heterogeneity,” potentially 
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reducing the costs involved in the creation of effective network ties (Motter, Zhou and Kurths, 

2005, p. 334). As suggested throughout this paper, in CAS a given system evolves in a non-linear, 

perturbable pattern of co-evolution among constituent elements. 

In a differentiated network, typically marked by “the strength of weak ties,” network 

synchronization is prone to emerge, rendering innovation relatively constant and, in that sense, 

sufficiently predictable for the purpose of program planning and projection (Cowan, Pines and 

Metzer, 1995). It is in this sense that Nobel Laureate Murray Gell-Mann (faculty member in Physics 

at the University of New Mexico and the Santa Fe Institute) writes (Gell-Mann, 1995) of “effective 

complexity” as a projection of a system’s present-level complexity combined with the same 

system’s “potential complexity.” With STOP AIDS, effective complexity as a realization of 

potential complexity was attained when the social actors involved changed prevailing norms to a 

higher level of fitness, i.e., the social network moved to a safer-sex based normative system. 

The foregoing suggests that applications of CAS to innovation diffusion can address not 

only the rate and sequencing of innovation adoption through the specification of threshold effects 

and phase transitions but also the acceleration of diffusion. The level of variety or heterogeneity 

among influentials’ interpretations of the value of innovations counters prevailing norms and 

sensitizes the target population, increasing reactivity and bringing about the early onset of 

innovation adoption. After the stage here characterized as destabilization, the resulting quality and 

density of communications among all individuals (units of analysis, processing elements) in a given 

social network becomes more active, draws in more energy, and undergoes perturbation. At this 

juncture, norms are reorganized (redefined, modified) as new patterns of adoption emerge. In is in 

this vein that Ortiz-Torres, Serrano-Garcia, and Torres-Burgos (2000, p. 859) argue that working to 

change “sex-related social norms and normative beliefs” is subversive, because “rather than 

idealizing culture, it promotes changes that respect diversity within the culture and foster 

participation in the development of new cultural values, beliefs and norms.” 

What impact might a high level of heterogeneity—or, interchangeably, variety or variance—

in the expected value of innovation have on diffusion? If expectancies are largely defined by groups 

and group norms, as Lewin argues, what happens when groups are moved by advocacy campaigns 

into uncomfortable zones of heterogeneity—for instance, when target populations are deliberately 

challenged—perturbed—and consequently change behaviors significantly (as did gay men in San 

Francisco between the eighties and nineties)? Do redefined group interpretations of what constitutes 

normative behavior lead to individual behavior change? How do perceived changes in the viability 

and normativity of available options affect the sequencing of choices associated with the adoption 

of innovations? Does heterogeneity of membership and roles in social networks make for variance 

of expectations and motivations (consistent with Lewin), as well as for more differentiated 

normative frames of reference? 

Inevitably, the growth and diversification of AIDS advocacy groups and coalitions means 

that the movement has come to include disparate ethical standpoints and normative belief systems, 

numerous tested modes of intervention, and a wide array of social and institutional actors which 

despite their diversity share commitments around AIDS prevention and eradication. It is also the 

case, often commented, that AIDS is no longer—no longer seen as—strictly a “gay” disease, but 

rather one that affects the entirety of the population. Differently put, it is seen as differentially but 

universally affecting the entire population, including, in addition to gay men, heterosexual men, 

young adults, injection drug users, “sex workers,” and other now-standard public-health group 

categories that, taken together, are virtually all-encompassing. 
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The preceding discussion suggests that a host of questions remain to be addressed in the 

innovation-diffusion field. These questions await the application of new mathematical and 

computational tools, and new theoretical perspectives. As to the first, there are numerous 

computational tools available, including self-organizing mapping systems, neural network software, 

and predictive network analysis software. As to the latter, it is suggested here that complex adaptive 

systems models provide a most promising theoretical and methodological source for innovation 

research. Under conditions we tentatively specify, the complex adaptive system and diffusion of 

innovations models are found to be essentially equivalent in important respects. Their synthesis and 

application could lend impetus to communicative action and advocacy efforts among a wide variety 

of social groups in varied contexts. It could also make innovation diffusion more predictable, and 

therefore more subject to planning, implementation, evaluation, and replication measures. 
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